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Chapter 1

Introduction

Every atomic nucleus is associated with a unique set of macroscopic proper-
ties: mass, angular momentum, excitation energies, electromagnetic moments,
etc. Studies of these observables led to discoveries of global phenomena, such
as the zero angular momentum of even-even nuclei or the increase in binding
energy per nucleon at certain, “ magic ”, numbers of protons and neutrons. In
a phenomenological sense this implies that the nuclei have intrinsic structure,
which is something that the early models, like the liquid drop model, could not
account for. The modern theories consider the nucleus as a many-boby quan-
tum system, providing insights into the nuclear structure through studying
macroscopic observables - nuclear moments in particular. A phenomenological
approach to the problems in nuclear physics is an alternative to a complete fun-
damental theory as well as its natural precursor. It is the better understanding
of the nuclear structure in neutron rich Magnesium (Mg) isotopes, that is the
main objective of this doctoral dissertation.

1.1 Physics motivation

The nuclear shell model has been successful in reproducing the magic numbers
as well as predicting spins of odd-mass nuclei, especially in the light and in-
termediate mass regions. However, properties of nuclei with 150 < A < 190
or A > 230 are not correctly described by the spherical shell model, since in
these regions collective phenomena associated with nuclear shapes departing
from spherical take place. The Nilsson model [1] is dealing with the problem
of single-particle motion in a deformed potential. Many odd-mass nuclei are
properly described by coupling the odd-particle motion to the rotations of a
deformed core [2]. A natural question is: “ does deformation play a role in
light nuclear systems? ”. A positive answer has been acquired with the early
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Figure 1.1: Nuclear chart in the region of the Island of inversion.
Experimental evidence for pure intruder ground states are indicated with black-
ened corners. Mixed wave functions are noted with a black strip. Unmarked
boxes indicate a lack of conclusive experimental data or belonging outside the
island. The results from the present work concerning 27,29,31,33Mg are taken
into account.

investigation of the stable 19F, 20Ne, 23Na and 24Mg. It has been shown that
the deficiency of both protons and neutrons in a major shell is causing strong
α-type correlations, resulting in well-defined prolate deformations, for instance
20Ne and 24Mg in the sd shell [2] (vol. 2, p. 99). When one or both types
of particles are filling to the middle or the end of a major shell there is a
competition between prolate and oblate shapes [3], as it is in the cases of the
stable 28Si, 32S and 36Ar. Advances in technology in the last two decades made
available many exotic nuclear species, enabling studies of systems with a filled
neutron sd shell, while maintaining the proton sd shell almost unoccupied.
The mass measurements of 31,32Na [4] indeed showed an increase in their bind-
ing energies, unexpected within the frame of the sd shell model. Constrained
Hartree-Fock calculations [5] reproduced these irregularities by allowing neu-
tron promotion from the ν 1d3/2 orbit to the ν 1f7/2 orbit, which resulted in
prolate deformations in these two isotopes. The ground-state spin of 31Na [6]
was another parameter incompatible with theoretical predictions, which gave
reasons to discuss a “ collapse of the conventional shell-model ordering in the
very neutron-rich isotopes ” [7]. The necessity of taking into account the ν 1f7/2

[8] and the ν 2p3/2 [9] orbitals, which are being populated before the sd shell is
full, indicated the disappearance of the N = 20 shell closure and gave rise to
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the expression Island of inversion. Two mechanisms have been justified to play
an important role in the inversion of the “ normal ” 0 ~ω (0p-0h) and intruder
n ~ω (np-nh) states [3]: (i) A reduction of the shell gap; (ii) An increase in the
neutron-neutron and proton-neutron interactions; The diminishing predictive
power of the nuclear models in the island have stimulated extensive experi-
mental studies, providing inputs for the theoretical modeling of the region. It
was originally thought that the Island of inversion initiates with the N = 20
isotones of Ne, Na and Mg and extends up to N = 22 or beyond. However, ex-
perimental studies determined that 28Ne18 [10, 11], 29Na18 [12–14] and 31Mg19

[15, 16] mark the beginning of the island. The maximum Z borderline also
needs to be modified, since g-factor measurements [17, 18] detected a consid-
erable amount of intruder components into the ground-state wave functions of
33,34Al. The available experimental facts are summarized in Fig. 1.1. The col-
lectivity of the even-even 32,34Mg is presently well established [19–24], whereas
the nuclear structure of the odd-mass 33Mg is rather unknown. A β-decay
study [25] suggests a 1p-1h configuration with spin and parity Iπ = 3/2+ in
contrast to Iπ = 5/2+ (1p-1h) from intermediate energy Coulomb excitation
[26] and proton inelastic scattering [27] experiments. The systematics of the
region, on the other hand, is evident for 2p-2h ground states [10, 22, 24, 28, 29].
Due to the close competition between different particle-hole excitations, only
experimental studies can reveal the true ground-state configuration of 33Mg.

1.2 This work

Measurements of nuclear moments are highly beneficial for studies of the nu-
clear structure, since these are extremely sensitive to the composition of the
nuclear wave function. The establishment of the nuclear spin and magnetic
moment of 31Mg indicates the disappearance of the N = 20 shell closure for
Mg, extends the Island of inversion to N = 19 and provides evidence for a
nuclear deformation. These findings are essential for the development of the
shell model in the vicinity of the island. The results on 31Mg are published
in Ref. [15, 30, 31], the full texts of which are included at the end of this dis-
sertation. While the first paper is focused on the interpretation of the result
in terms of large-scale shell-model calculations, the latter two concentrate on
the experimental technique, describing the apparatus and the reference mea-
surements on 8Li. A comprehensive discussion on the establishment of the sign
of the magnetic moment is given in Ref. [30]. This discussion further extends
on studying the nature of the low-lying excited states. Preparatory work for
the measurements on 31Mg is described in Ref. [31], namely the studies of
the experimental β asymmetry in different hosts (Au, Pt and MgO) and as a
function of the laser intensity. The latter paper concentrates on the atomic
physics, more specifically on understanding the relative intensities of the hy-
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perfine structure components. The present thesis presents additional studies of
31Mg. The physics case is discussed in terms of nuclear-structure evolution over
the Mg chain and transition to the Island of inversion. The magnetic moments
of 29,31Mg [15, 16, 30, 31] are reevaluated. The optical transition strengths
and the process of optical pumping for Mg ii are understood, based on the pi-
oneering work described in Ref. [12]. Computer codes simulating optical and
β-asymmetry spectra are published for the first time (open source).

The main objective of this dissertation is to unambiguously determine the
ground-state spin and magnetic moment of 33Mg by means of laser spectroscopy
in combination with nuclear magnetic resonance. Large-scale shell-model cal-
culations are outlined and used to draw conclusions through a comparison with
the experimental results. An alternative interpretation of former experimental
studies is given within the frame of the Nilsson and particle plus rotor models.
Additional research is done in order to understand the generated NMR line-
shapes with modulation. The essence of the present studies on 33Mg is sum-
marized in a preliminary version of a publication [32], the full text of which is
included at the end of this thesis.

The hyperfine parameters of the stable 25Mg ii in the D1 and D2 lines are
obtained by means of fluorescence spectroscopy. The magnetic moment of
27Mg and an estimate of the quadrupole moment of 29Mg, extracted from the
hyperfine structure of their singly-ionized atoms, are reported for the first time.
The case of 27Mg is also a central topic in a publication in preparation [33].



Chapter 2

Measurement of nuclear
moments and radii

2.1 Electromagnetic moments
The electromagnetic moments are defined by the general expression:

Mλµ=0 = 〈I,M = I|
A∑

k=1

T̂λµ=0(k)|I,M = I〉, (2.1)

where T̂λµ is a one-body tensor operator of rank λ, describing the interaction
of the nucleus with an external electromagnetic field. It stands for either Q̂λµ

when giving rise to the electric moments associated with the static charge dis-
tribution, or M̂λµ when giving rise the magnetic moments associated with the
charge currents. The multipole operators Q̂λµ and M̂λµ can be expressed with
the spherical harmonics Yλµ(θ, φ) [34] (p. 583). Their parities are (−)λ and
(−)λ+1, thus requiring λ-even for the static moments and λ-odd for the mag-
netic moments due to the parity conservation. For spherical tensor operators
the M -state dependence of the matrix elements reduces to a dependence on
the Clebsch-GordanA or 3j coefficient via the Wigner-Eckart theorem:

〈IM |T̂λµ|IM〉 = (−1)I−M

(
I λ I

−M µ M

)
〈I||T̂λ||I〉, (2.2)

where 〈I||T̂λ||I〉 is the reduced matrix element. According to the properties
of the 3j coefficients, µ = 0 and λ must satisfy the triangle condition ∆(IIλ)

A The relation between the Clebsch-Gordan and the 3j coefficients (A.14), together with
their numerical implementation, is given in Appendix A.4.
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(A.6), where I is the nuclear spin. The maximum value of λ is therefore λmax =
2I. The only moment for I = 0 is the electric monopole moment

∑A
k=1 ek

(λ = 0), which represents the total charge of the nucleus. The magnetic dipole
moment (λ = 1) is defined for I ≥ 1/2 and the electric quadrupole moment
(λ = 2) for I ≥ 1.

The magnetic dipole moment operator for a single nucleon in a static binding
field is:

µ = µN

(
gtz

l l + gtz
s s
)
/ ~, (2.3)

where gtz

l and gtz
s are the orbital and spin gyromagnetic ratios of the nucleon in

terms of nuclear magnetons µN = e~/2mp = 5.05078317(20)× 10−27 J/T [35].
The index tz represents the isospin of the particle, tz(p) = −1/2 for protons
(π) and tz(n) = 1/2 for neutrons (ν). Since the nuclear magneton is defined
with e and mp, the proton charge and rest mass, the orbital g factors become:

gπ
l = 1 , gν

l = 0 . (2.4)

The latest experimental proton and neutron g factors, taken from Ref. [35],
are:

gπ
s = 5.585694675(57) , gν

s = −3.82608545(90) . (2.5)

The fact that gs of the uncharged neutron is different from zero and that of
the proton is far from two, the expectation value from the Dirac equation for
a point particle with spin 1/2, is an indication that they are not elementary
point particles but have an internal structure. The observable magnetic mo-
ment of a single nucleon in a shell-model orbit is the expectation value of the
magnetic moment operator (2.3) in the state with maximum projection of an-
gular momentum, as defined in (2.1). According to the projection theorem [36]
(p. 7):

〈jj|µ|jj〉 =
〈jj|µ · j|jj〉〈
jj
∣∣j2
∣∣ jj〉 〈jj|j|jj〉 (2.6)

the components of the vector µ perpendicular to j average out. Thus, the
projection on the third axis is 〈jj|µ̂z|jj〉 = 〈jj|µ · j|jj〉〈jj|jz|jj〉/〈jj|j

2|jj〉.
Since 〈jj|jz|jj〉 = j ~, 〈jj|j2|jj〉 = j(j+1)~2 and using the squaring of j = l+s
to express the product operators one finds:

〈jj|µ · j|jj〉 = µN

〈
jj
∣∣ gtz

l j2 +
(
gtz

s − gtz

l

) (
j2 − l2 + s2

)
/ 2
∣∣ jj〉 / ~ .

It is now straightforward to evaluate the single-particle magnetic moments:

µ = j

(
gtz

l ±
gtz

s − gtz

l

2l + 1

)
µN , j = l ± 1

2
. (2.7)
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The latter are also known as the Schmidt values. In the extreme shell-model
picture the ground states of odd-mass nuclei are considered to be determined
mainly by the odd particle, which alone gives rise to the nuclear magnetic
moment. Comparison with experiments shows that the Schmidt values are
generally larger in magnitude. One explanation for this could be that gs for
a bound nucleon is different than the free-nucleon value. A common approach
is to consider effective g factors derived by fitting to experimental data in the
precise region of interest. In general gtz

s effective ≈ 0.7 gtz
s free yields reasonable

results. The nuclear gyromagnetic ratio of a state with an angular momentum
I is defined with:

〈µI〉 = gI I µN/ ~ ⇒ µI = gI I µN . (2.8)

The electric quadrupole moment operator of a point particle is defined as:

eQzz = etze
(
3z2 − r2

)
= etze

√
16π
5
r2Y20(r) , (2.9)

where etz is the charge of the carrier, a proton (π) or a neutron (ν), in units e.
This definition is based on the third diagonal component of the tensor: Q̂ij =
q(3rirj − r2δij), known from the Classical Electrodynamics. For a free nucleon
it is expected to have eπ = gπ

l = 1 and eν = gν
l = 0. Experimental quadrupole

moments of nuclei with an odd neutron are indeed smaller than those with an
odd proton, but are definitely different from zero. One can account for such
effects by introducing proton and neutron effective charges, denoted here with
etz . The operator defined with (2.9) does not include the elementary charge
e and therefore has the dimension of a surfaceA. All quadrupole moments in
this thesis will be given in units b (barnB). The single-particle quadrupole
moments are given with the expression:

eQ = 〈jj|eQzz|jj〉 = ∓2j − 1
2j + 1

〈
r2
〉
etze , (2.10)

where 〈r2〉 is the mean-square radius of the nucleon. A derivation can be
followed for instance in Ref. [37–39]. The sign corresponds to a particle (−) or
a hole (+). The more general expression:

〈jm|eQzz|jm〉 = ±j(j + 1)− 3m2

2j(j + 1)
〈
r2
〉
etze , (2.11)

can be obtained with the use of (2.2). By summing (2.11) over allm statesC one
A The quantity Q defined with (2.9) still contains the same information on the nuclear

structure as the quadrupole moment eQ, namely the geometrical distribution of the charge.
In order to avoid the inclusion of e in the value of eQ the elementary charge is embedded in
the units (emb or efm2). By doing so the actual values become identical: Q(mb) = eQ(emb)
or Q(fm2) = eQ(e fm2).

B 1b = 10−28m2. Commonly used are mb or fm2 (1mb = 10−31m2, 1fm2 = 10−30m2).
C Use the relation

Pj
m=−j m2 = j(j + 1)(2j + 1)/3.
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finds that the total quadrupole moment of a full orbit vanishes. Furthermore,
since a pair of nucleons couple to a zero angular momentum they have no
preferential orientation in space in which case their wavefunction has a spherical
symmetry |ψ(r)|2 = |ψ(r)|2. Hence the expectation values of the coordinates
are one third of the mean-square radius 〈x2〉 = 〈y2〉 = 〈z2〉 = 〈r2〉/3 in which
case the quadrupole moment (2.9) vanishes.

2.2 Nuclear deformations
The observation of very large quadrupole moments, far from the single-particle
estimates, is attributed to collective phenomena resulting in deformation of the
nuclear core. In the case of quadrupole deformations (λ = 2) the nuclear shape
is parametrized with:

Rk
k=1, 2, 3

= R0

[
1 +

√
5
4π

β cos
(
γ − 2kπ

3

)]
, (2.12)

where β and γ are the Hill-Wheeler coordinates [40]. The parameter β deter-
mines the quadrupole deformation and γ the deviation from axial symmetry.
In the axially symmetric case (γ = 0 ⇔ R1 = R2 = R⊥) the following relation
exists:

R3 −R⊥
R0

=
3β
4

√
5
π
. (2.13)

The quadrupole momentA in the reference frame of the nucleus is given by:

Q0 =
4
3

〈 Z∑
k=1

r2k

〉
δ , (2.14)

where δ is the distortion parameter, which for a uniformly charged spheroidal
nucleus with a sharp surface is given by:

δ =
3
2
R2

3 −R2
⊥

R2
3 + 2R2

⊥
≈ ∆R

R
+

1
6

(
∆R
R

)2

+ . . . , (2.15)

with ∆R = R3 − R⊥ and R ≈ R0. Equations (2.12) and (2.14), (2.15) are
justified in Ref. [34] (p. 7) and Ref. [2] (vol. 2, p. 47), respectively. Using
(2.13), (2.14) and (2.15) one finds a relation, between the intrinsic quadrupole
moment and the deformation, based on the shape (2.12) with axial symmetry:

Q0 = Z
〈
r2
〉
β

√
5
π

(
1 +

β

8

√
5
π

)
, (2.16)

A Attention must be paid since “ quadrupole moment ” is used for either Q or eQ.
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where the second radial moment is related to the mass number as:〈
r2
〉

=
3
5
(
1.12A1/3

)2(1 + 3.84A−2/3 + . . .
)
≈ 3

5
(
1.2A1/3

)2 (fm2) , (2.17)

according to Ref. [2] (vol. 1, p. 161).
Extensive studies in the regions of deformation reveal that the low-energy

states in odd-A nuclei, despite the complexity of the spectra, can be classified as
a number of rotational bands characterized by an intrinsic angular momentumA

K and a parity π. A typical example is the case of 25Mg. A summary of the
experimental data and an interpretation, as well as references to the original
work can be found in Ref. [2] (vol. 2, p. 284). The band with Kπ = 1/2+,
based on the Nilsson 1/2 [200] orbital, is of a particular interest, since the
ground state of 31Mg was found to be 1/2+ [15], based on the same orbital,
hence making it a candidate for one of the low-lying states observed in 33Mg
[20, 25]. The energy levels of a rotational band in an odd-A nucleus with a
strong deformation (strong coupling limit) are described by:

EK(I) = E0
K +

~2

2I

[
I(I + 1) + a (−1)I+1/2(I + 1/2)δK,1/2

]
, (2.18)

where I is the moment of inertia, E0
K is the bandhead and a is the decoupling

parameter associated with the odd particle. The explicit form of a is given
in Ref. [34] (p. 112). A table with calculated a values for different orbitals in
sd−pf nuclei at a prolate deformation β = 0.4 can be found in Ref. [2] (vol. 2,
p. 290). The magnetic dipole moment of an odd-A nucleus has two contribu-
tions, gR representing the gyromagnetic ratio of the rotor (µR = gR RµN ) and
gK , rising from the single-particle motion:

µ = gRI + (gK − gR)
K2

I + 1
. (2.19)

This equation is valid only for bands with K 6= 1/2. In the case of K = 1/2
one must use:

µ = gRI +
gK − gR

4(I + 1)

[
1 + b (2I + 1)(−1)I+1/2

]
, (2.20)

where b is the magnetic decoupling parameterB . The reduced transition pro-
babilities for magnetic dipole radiation, can be obtained from Ref. [2] (vol. 2,
p. 56, 57). In the strong coupling limit the projection Ω of the total momentum
of the odd nucleon on the symmetry axis equals the projection K of the total

A The angular momenta quantum numbers are referred to as angular momenta. The
Planck’s constant ~ in such sentences is implicit.

B The parameters a and b are related: (gK−gR) b = −(gl−gR) a−(−1)l(gs +gK−2gl)/2
[see Ref. [2] (vol. 2, p. 303)].
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angular momentum I (Ω = K). The single-particle g factor can be calculated
as:

gK =
1
K
〈K|µ̂3|K〉 , (2.21)

where µ̂3 = µN (gtz

l l3 + gtz
s s3) is the magnetic moment operator in the body-

fixed frame and |K〉 are the Nilsson wave functions. The g factor of a solid
rotor is approximately equal to the density of protons gR ≈ Z/A [2] (vol. 2,
p. 54). The observable or spectroscopic quadrupole moment and the intrinsic
quadrupole moment (2.14) are related as:

Q = 〈IK20|IK〉〈II20|II〉Q0 =
3K2 − I(I + 1)
(I + 1)(2I + 3)

Q0 . (2.22)

Knowledge on the deformation of even-even nuclei, 30,32,34Mg being of a par-
ticular interest in this thesis, can be obtained through the reduced transition
probabilities, either from Coulomb excitation cross sections, or from lifetime
measurements:

B(E2;KIi → KIf ) =
1

2Ii + 1
|〈KIf ||M (E2)||KIi〉|2

=
5

16π
e2Q2

0 〈IiK20|IfK〉2 ,
(2.23)

where Ii and If are the initial and the final angular momenta and the operator
M (E2) =

∫
ρ(r) r2 Y20(r) dτ is the general form of (2.9) with ρ(r) representing

the charge density. The treatment leading to (2.22) and (2.23) can be followed
in Ref. [2] (vol. 2, p. 45). The Clebsch-Gordan coefficients involved can be
calculated with the tools given in Appendix A.4.

2.3 Atomic hyperfine structure

The hyperfine structure (HFS) observed in atomic spectra results from the in-
teraction of the nuclear multipole moments with the charge and current distri-
butions associated with the moments of the electron environment. The Hamil-
tonian in the most general form is:

HHFS = H(M1) +H(E2) + . . . (2.24)

The hyperfine interaction couples the angular momenta of the nucleus and the
electrons I and J , being no longer integrals of motion, to the total angular
momentum operator F = I + J . Thus the quantum number F is used to
describe the quantum states |JIFMF 〉. F satisfies the triangle condition (A.6)
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and therefore the number of states in a hyperfine multiplet is 2I + 1 for J > I
and 2J + 1 for I > J . The magnetic dipole term in (2.24) is:

H(M1) = −〈µI〉 · 〈BJ〉 = A
I · J
~2

, (2.25)

where 〈µI〉 is given by (2.8) and BJ is the magnetic field, associated with the
total magnetic moment of the electrons µJ :

〈µJ〉 = −gJ J µB/ ~ ⇒ µJ = −gJ J µB . (2.26)

The Bohr magneton is defined as µB = e~/2me = 927.400899(37)× 10−26 J/T
[35] and gJ is given by the Landé formula:

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)

+ gS
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
.

(2.27)

The g factors gL = 1 and gS = 2.0023193043617(15) [41] are associated with
the magnetic moments of the orbital and spin motions of the electrons

µL = −gL LµB/ ~ , µS = −gS S µB/ ~ , (2.28)

the coupling of which gives rise to the atomic fine structure (FS). One can
write:

〈BJ〉 = −〈B(0)〉J/ ~J , (2.29)

where 〈B(0)〉 is a scalar quantity representing the average flux density of the
magnetic field at the nucleus. For a single electron or an electron outside a
closed shell (alkali-like atoms) the general direction of µJ , and so the one of BJ

at the nucleus, is antiparallel to the angular momentum J , as can be concluded
from (2.26) and (2.27). Thus in alkali-like atoms 〈B(0)〉 > 0. Calculated values
of 〈B(0)〉 due to the alkalies valence electrons are presented in Ref. [42] (p. 132).
The energy levels depend on the product I · J , which can be expressed as a
function of J2, I2 and F 2 by squaring F = I + J . Using (2.8) and (2.29) the
magnetic dipole hyperfine parameter becomes:

A =
gI µN 〈B(0)〉

J
. (2.30)

A formal expression for the term H(E2) in (2.24) is given by (2.55). However,
a more complex treatment is required in order to extract the contribution of
the quadrupole interaction to the atomic energies. A detailed description can
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be followed in Refs. [42, 43]. The energy levels of the hyperfine structure,
according to Ref. [42] (p. 15), are given with:

EF = EJ +A
ξ

2
+B

3ξ(ξ + 1)− 4I(I + 1)J(J + 1)
8I(2I − 1)J(2J − 1)

,

ξ = F (F + 1)− I(I + 1)− J(J + 1) ,
(2.31)

where EJ represents the energy of the fine-structure level. The parameter B,
called the electric quadrupole hyperfine parameter, has the form:

B = eQ 〈VJJ(0)〉 , (2.32)

where eQ is the nuclear spectroscopic quadrupole moment and 〈VJJ(0)〉 is
the average field gradient at the nucleus induced by the electrons, having a
cylindrical symmetry about the J axis [43] (p. 13). The quadrupole hyperfine
parameter B, and therefore the second term in (2.31), vanishes for either J =
1/2 or I = 1/2. If one neglects the volume changes along an isotopic chain
one can approximate that the average magnetic field 〈B(0)〉 and electric field
gradient 〈VJJ(0)〉 are identical for all the atoms in the chain. Thus using (2.30)
and (2.32) for two isotopes one arrives with:

A1/A2 = g1/g2 , (2.33)
B1/B2 = Q1/Q2 . (2.34)

The above equations are used for extraction of nuclear moments through atomic
spectroscopy. However, these have as important application if used in the
opposite direction. Measurements of nuclear moments with other techniques
allow the determination of A and B. Equation (2.33) is, in this respect, essential
for the extraction of nuclear spins from the hyperfine structure, as demonstrated
in Section 5.3.

While the atomic hyperfine structure originates from the interaction of the
nucleus with the natural electromagnetic field associated with the charge and
current distributions of the atomic electrons, many experimental techniques
require the employment of external fields. It is important for measurements
based on the hyperfine structure to understand the influence of these fields.
The Hamiltonian (2.25) in the presence of an applied magnetic field B0 takes
the form:

H(M1) = A
I · J
~2

− 〈µI〉 ·B0 − 〈µJ〉 ·B0 , (2.35)

where 〈µI〉 and 〈µJ〉 are the magnetic moments given with (2.8) and (2.26),
respectively. The effect on the energy levels is referred to as the Zeeman effect.
In the case with µJ B0 � A the magnetic components of the F states (MF =
−F , −F + 1 , . . . , F − 1 , F ) obtain different energies proportional to the
external field:

EMF
= EF + gF µB B0MF . (2.36)
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The corresponding g factor in analogy with (2.27) is given with the expression:

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

− gI
µN

µB

F (F + 1)− J(J + 1) + I(I + 1)
2F (F + 1)

.

(2.37)

The second term describing the nuclear contribution is often neglected due
to the factor µN/µB = me/mp = 5.446170232(12) × 10−4 [35]. In a strong
magnetic field I and J are decoupled and the proper description of the states
is no longer given by F and MF , but by I, MI , J and MJ :

EMI MJ
= AMI MJ + gJ µB B0MJ − gI µN B0MI . (2.38)

The Zeeman effect in this limit is called the Paschen-Back effect. At inter-
mediate fields the energy levels follow the rule that two states never cross if
they have the same magnetic number M , where M = MF for low fields and
M = MI +MJ for high fields. A detailed treatment of the Zeeman effect for
all fields can be found for instance in Ref. [42] (p. 19-27).

The selection rules for dipole transitions between hyperfine-structure com-
ponents of two different multiplets, rising directly from the triangle condition
(A.6), are:

∆F = 0 , ±1 ; F + F ′ ≥ 1 . (2.39)

Electric-dipole radiation within the same multiplet is forbidden by the parity
selection rule.

2.4 Isotope shifts and charge radii
The isotope shift is defined as the difference between the fine-structure splitting
of two isotopes of the same element:

δνAA′

i = νA
i − νA′

i . (2.40)

The index i denotes the atomic transition, for instance i : 32S1/2 → 32P3/2.
The short spectroscopic notation n2S+1LJ is being used throughout this thesis.
A and A′ in (2.40) are the mass numbers of the two isotopes. The isotope shift
has two contributions:

δνAA′

i = δνAA′

i , MS + δνAA′

i , FS , (2.41)

where δνAA′

i , MS represents the mass shift (MS), rising from the motion of the
nucleus in the center of mass system, and δνAA′

i , FS stands for the field shift
(FS), corresponding to changes in the nuclear volume and shape and therefore
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influencing the Coulomb attraction. The field effect is largest in transitions
involving s electrons since their density at the nucleus is the highest. In the
center of mass system the total momentum is:

P +
∑

k

pk = 0 , (2.42)

where P and pk are the momenta of the nucleus and the electrons, respectively.
The total kinetic energy is given by:

EK =
P 2

2M
+
∑

k

p2
k

2me

=
∑

k

p2
k

2M
+
∑
k 6=l

pk · pl

2M
+
∑

k

p2
k

2me
.

(2.43)

Since the nuclear massM is much larger than the mass of the electrons, in a first
approximation the nucleus can be considered as stationary and later account
for its motion by perturbation theory [43]. With this approach, changes of M
do not influence the electron momenta pk. According to the virial theorem
the average total energy of an atom equals the average kinetic energy with the
opposite sign: 〈E〉 = −〈EK〉. The mass shift with the use of (2.43), becomes:

δνAA′

i , MS =
1
2h

M −M ′

MM ′

[〈∑
k

p2
k

〉
i
+
〈∑

k 6=l

pk · pl

〉
i

]
. (2.44)

The first and the second term in (2.44) are called normal mass shift (NMS)
and specific mass shift (SMS):

δνAA′

i , MS = δνAA′

i , NMS + δνAA′

i , SMS . (2.45)

The transition hνi for a nucleus with an infinite mass, with the aid of (2.43),
becomes hνi =

〈∑
k p2

k

〉
i
/ 2me. Making this substitution in (2.44) and approx-

imating the nuclear with the atomic masses M = MA and M ′ = MA′ one finds
the normal mass shift:

δνAA′

i , NMS = νime
MA −MA′

MAMA′
. (2.46)

This formula is usually rearranged in order to use the dimensionless atomic
massesA:

δνAA′

i , NMS = νi
me

u

mA −mA′

mAmA′
, (2.47)

A mA = MA/u, u = 1.66053873(13)× 10−27 kg [35].
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where u is the unified atomic mass. Correlations between the electrons, con-
tributing in the second term in (2.44), need a more sophisticated approach. A
detailed description can be found in Refs. [42, 44]. The field shift is given by:

δνAA′

i , FS = Fi

(
δ
〈
r2
〉AA′

+
c2
c1
δ
〈
r4
〉AA′

+
c3
c1
δ
〈
r6
〉AA′

+ . . .

)
, (2.48)

with the convention that δ〈rn〉AA′
= 〈rn〉A − 〈rn〉A′

and the radial moments:

〈rn〉 =
∫
ρ(r) rndτ∫
ρ(r) dτ

, (2.49)

as described in Ref. [45]. The quantity Fi in (2.48) is the electronic factor, which
is proportional to the change of the electronic charge density at the nucleus
for the transition of interest i, ρ(r) represents the nuclear charge distribution
density and 〈r2〉 is called the mean-square charge radius, giving the largest
contribution to the field shift in (2.48). For most applications the isotope shift
(2.40) is written as:

δνAA′

i = Ki
mA −mA′

mAmA′
+ Fi δ

〈
r2
〉AA′

, (2.50)

where Ki is the total mass-shift coefficient. Note that the quantities mA and
mA′ are dimensionless and thereforeKi has the dimension of a frequencyA. The
linear dependence δνAA′

i

(
δ〈r2〉AA′)

(2.50) allows the determination of mean-
square charge radii through isotope shift measurements. The coefficients Ki

and Fi must be obtained, either from reference measurements on at least three
isotopes with known mean-square charge radii, or based on theory or other
experimental data. A common approach to improve the precision of Ki and Fi

is to perform measurements on the reference isotopes in two transitions i and
j, for instance i : 32S1/2 → 32P1/2 and j : 32S1/2 → 32P3/2. Then by writing
(2.50) for both and rearranging in the form:

mAmA′

mA −mA′
δνAA′

i︸ ︷︷ ︸
Y

=
Fi

Fj︸︷︷︸
a

mAmA′

mA −mA′
δνAA′

j︸ ︷︷ ︸
X

+Ki −Kj
Fi

Fj︸ ︷︷ ︸
b

, (2.51)

one obtains additional conditions a = Fi/Fj and b = Ki − aKj , being used to
reduce the errors of Ki and Fi. Plots of data according to (2.50) and (2.51)
are known as King plots. More information can be found in Refs. [44, 45].

A If the atomic masses MA = mA u are used in (2.50) instead of mA, Ki acquires the
dimension s−1kg, in which case it is usually quoted in units s−1u, such that the actual value
remains the same.
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2.5 Nuclear magnetic resonance
The concept of the nuclear spin I rests on the fact that the nucleons couple
together so strongly, that for most applications the nucleus can be considered
as a single spinning particle. Thus an external magnetic field does not have the
strength to break the nucleon coupling and results in a nuclear energy splitting
according to the normal Zeeman effect. The formalism of the nuclear magnetic
resonance (NMR) was implicitly introduced in Section 2.3. By substituting
(2.30) in (2.38) one obtains the atomic energies in a strong magnetic field in
the form:

EMI MJ
= gJ µB B0MJ − gI µN (B0 − 〈B(0)〉MJ/ J)MI , (2.52)

and therefore:
EMI+1 − EMI

= −gI µN B , (2.53)

where B is the attenuated magnetic field at the nucleus. High precision mea-
surements, as those described in this dissertation, must account for the shielding
effects of the electron environment. The energy splitting (2.53) is equidistant.
Thus at a resonance frequency, photons with energy:

h νL = |gI |µN B , (2.54)

will be absorbed by the atom. The absorption frequency νL, known as the
Larmor frequency, describes the precession of the average nuclear magnetic
moment, and so the nuclear spin, around the magnetic field axis. Magnetic
resonance measurements are often done in solids with a cubic crystal structure,
since they provide a homogeneous electric field and hence no quadrupole split-
ting. However, if the subject of interest is the nuclear quadrupole moment,
crystal structures violating the cubic symmetry are the only environments gen-
erating large enough electric-field gradientsA and detectable quadrupole inter-
actions. The latter are described by the second term in (2.24):

H(E2) =
hνQ

4I(2I − 1) ~2

[
3I2

z − I2 + η
(
I2

x − I2
y

)]
, (2.55)

where
νQ = eQVzz/ h (2.56)

is the quadrupole frequency and η = (Vxx−Vyy)/ Vzz is the asymmetry parame-
ter of the electric-field gradient. The energy levels for η = 0 according to (2.55)

A The electric-field gradient tensor is V̂ = Grad
ˆ
grad ϕ(r)

˜
= ∇∇ϕ(r), where ϕ(r) is

the electric potential. In the principle axis system (PAS) Vij = ∂2ϕ(r)/∂ri∂rj = 0 for i 6= j

and tr(V̂ ) = 0. Thus V̂ is described by only two parameters Vzz and η = (Vxx − Vyy)/ Vzz .
In PAS |Vzz | ≥ |Vyy | ≥ |Vxx| and therefore η ∈ [0, 1].
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are:
EMI

=
hνQ

4I(2I − 1)
[
3M2

I − I(I + 1)
]

(2.57)

and therefore:
EMI+1 − EMI

=
3hνQ

4I(2I − 1)
(2MI + 1). (2.58)

The sum of (2.53) and (2.58) fully describes the energy splitting of a nucleus
with a spin I in an electromagnetic field, characterized only by B and Vzz.
More information about magnetic and quadrupole resonance can be found in
dedicated texts, for instance Ref. [46].

The magnetic resonance measurements, described in this dissertation, are
based on the anisotropy of the β decay of an oriented nuclear ensemble. The
angular distribution of the emitted β± particles, as described in Ref. [47], is:

W (θ) = 1 +
υ

c
AβP cos θ , (2.59)

where

P =
I∑

MI=−I

p (MI)MI/ I , (2.60)

with p (MI) being the probability for occupation of the MI state, is the nuclear
polarization, Aβ is the β-asymmetry parameter, υ is the velocity of the emitted
particles and θ is the polar angle towards the orientation axis. The physical
meaning of W (θ) is that the probability for emission in any direction within
the solid angle Ω is given by:

PΩ =
∫

Ω

W (θ)
4π

dΩ . (2.61)

With other words W (θ)/4π is the probability density associated with one par-
ticular directionA. The β-asymmetry parameter is a specific property of every

A The direction through the elementary solid angle dΩ = sin θ dθ dϕ.

Table 2.1: Asymmetry parameter Aβ for allowed Gamow-Teller β transitions.
The upper sign corresponds to an electron decay.

Ii → If Aβ∓

If = Ii + 1 ± Ii
Ii + 1

If = Ii − 1 ∓1

If = Ii ∓ 1
Ii + 1
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β-decaying state. In the case of allowed Gamow-Teller transitions it can be
calculated asA:

Aβ =
∑

f

bif A
if
β , (2.62)

where bif denote the branching fractions and Aif
β are the partial β asymmetries

from Tab. 2.1. Experimentally the β-decay anisotropy can be monitored with
two scintillation detectors placed at 0◦ and 180◦ with respect to the orientation
axis. The quantity:

A =
N(0◦)−N(180◦)
N(0◦) +N(180◦)

≈ υ

c
AβP (2.63)

is called experimental β asymmetryB and it has the advantage to be propor-
tional to both, the β-asymmetry parameter and the nuclear polarization (2.60).
The approximation sign in (2.63) results from the assumption that the detec-
tor surfaces cover small solid angles, for which the assumption W (θ) ≈ const
is valid. A proper calculation of the number of counts N would involve the
evaluation of (2.61) according to the geometry of the experimental setup. The
ratio υ/c, especially for exotic species with Qβ of the order of several MeV, is
often substituted with unity.

Finally by monitoring the experimental β asymmetry (2.63) one is sensitive
to the amount of nuclear polarization. By applying an external radio-frequency
(RF) field, matching the energy splitting given by the sum of (2.53) and (2.58),
one induces transitions between the MI states, equalizingC their population.
As a result a resonant drop occurs in the polarization |P | and therefore in
the observable |A|, yielding the exact energy splitting and thus the nuclear
moments of the state.

2.6 NMR lineshapes with modulation
Following from the phenomenological Bloch equations [46], the nuclear absorp-
tion profile is described by the Lorentzian function (3.48)D. Since the ab-
sorbed energy is proportional to the change in the nuclear polarization (2.60),

A Equation (2.62) has the more general form υAβ =
P

f bif υif Aif
β if one accounts for

the different particle velocities υif depending on the energies of the final states. The latter
expression for υAβ can be directly substituted in (2.59). Abbreviation: i - initial, f - final.

B The magnetic dipole hyperfine parameter, the β-asymmetry parameter and the exper-
imental β asymmetry have been historically denoted with the same letter. Here they are
discriminated through the notation A, Aβ and A, respectively.

C Excitation and induced emission have the same probability. Levels with higher popu-
lation p (MI) will be excited or induced to decay, per unit time, proportionally to p (MI),
thus resulting in their depopulation.

D The Lorentzian profile (3.48) is given centered around x = 0. For the purposes in this
section one must make the substitution x = ν − ν0.
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the NMR lineshapes observed through the experimental β asymmetry (2.63)
are also Lorentzian. There are several major mechanisms of broadening and
modification of this profile, related to the specific experimental conditions, as
described in Ref. [48]. The following text is dedicated to the specific problem
of the frequency-modulation effect on the NMR lineshapes.

Lets consider a frequency modulation ξ = ν+Mϕ(t), where ν is the applied
central frequency, M is the modulation amplitude and ϕ(t) ∈ [−1, 1] ∀t is a
periodic reversible function. The time spent for each frequency is:∣∣∣∣ dtdξ

∣∣∣∣ = ∣∣∣∣ ddξ
[
ϕ−1

(
ξ − ν

M

)]∣∣∣∣ . (2.64)

The total absorption profile is then given, with a precision to a constant coef-
ficient, as:

f(ν ; ν0, Γ, M) ∼
∫ ν+M

ν−M

L(ξ − ν0; Γ)
∣∣∣∣ dtdξ
∣∣∣∣ dξ , (2.65)

where L(ξ−ν0; Γ) is the Lorentzian profile (3.48). One can change the variables
with the substitution τ = (ξ − ν)/M , leading to:

f(ν ; ν0, Γ, M) ∼
∫ 1

−1

L(Mτ + ν − ν0; Γ)
∣∣∣∣ ddτ [ϕ−1(τ)

]∣∣∣∣ dτ . (2.66)

For the purpose of fitting experimental spectra one needs a function with an
amplitude of a unity. It is therefore more convenient to consider the function
g(ν ; ν0, Γ, M) = f(ν ; ν0, Γ, M)/f(ν0; ν0, Γ, M). Thus one can make all the
considerations with a precision to a constant parameter, without any loss of
generality. Lets consider first the case of a ramp modulation:

ϕ(t) =
2
T

(t− kT ), t ∈
[
−T

2
+ kT,

T

2
+ kT

]
, ∀k ∈ Z ; (2.67)

where T is the period of the modulation. Substituting (2.67) and (3.48) into
(2.66), one obtains an analytical expression for the line profile:

f(ν ; ν0, Γ, M) ∼
[
arctg

2(ν − ν0 +M)
Γ

− arctg
2(ν − ν0 −M)

Γ

]
. (2.68)

In the case of a sinusoidal modulation ϕ−1(τ) = arcsin(τ), the integral (2.66)
reduces to:

f(ν ; ν0, Γ, M) ∼
∫ 1

−1

{
1 +

[
2(Mτ + ν − ν0)

Γ

]2}−1
dτ√

1− τ2
. (2.69)

The integral (2.69) is absolutely convergent, despite the singularities at τ =
±1. The theoretical profiles (2.68) and (2.69), with M = Γ, are drawn in
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Figure 2.1: Theoretical NMR curves with a frequency modulation M = Γ.
(1) The natural Lorentzian NMR profile; (2) Line profile for a ramp modulation
[the normalized function (2.68)]; (3) Line profile for a sin modulation [the
normalized function (2.69)];

Fig. 2.1. The second function is treated numerically using Bode’s rule from
Refs. [49, 50]. Both functions can be used for fitting experimental data. Since
the frequency generators available at COLLAPS provide a sinusoidal modula-
tion, (2.69) played an important role in bringing consistency between the NMR
spectra of 33Mg, obtained with different frequency modulations. The very first
NMR spectrum of 33Mg, detected with a frequency modulation of 20 kHz, much
larger than the Lorentzian width of the resonance, is drawn in Fig. A.4 (a).



Chapter 3

Laser spectroscopy

3.1 Collinear laser spectroscopy at ISOLDE

The neutron rich Mg isotopes are produced at ISOLDE - CERN [51] by 1.4 GeV
protons impinging on a thick UCx/graphite target. By maintaining the target
at a temperature of ≈ 2000◦C, the diffusion is accelerated and release times of
the order of a few hundred milliseconds are achieved, enabling the extraction
of short-lived species. Laser ionization is applied to chemically select Mg [52]
with partial yields according to Tab. 3.1. The radioactive beams are typically

1

2

4

5

3

6

7

9 8

Figure 3.1: Collinear laser spectroscopy setup (COLLAPS) at ISOLDE - CERN
1. Incoming singly ionized atoms; 2. Laser beam overlapped with the ion beam;
3. Electrostatic-deflection plates; 4. Post-acceleration lenses; 5. Photo tubes;
6. Guiding-field coils; 7. Magnet poles; 8. Scintillation detectors; 9. Host crystal
and RF coil;
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accelerated to 60 keV, mass analyzed with the general purpose separator (GPS)
and delivered to the collinear laser spectroscopy setup COLLAPS, drawn in
Fig. 3.1.

Optical spectroscopy at COLLAPS involves the first section of the appa-
ratus, up to the optical detection (5) in Fig. 3.1. The singly ionized Mg
(Mg ii) resonantly interacts with linearly polarizedA UV (≈ 280 nm) laser ra-
diation. The laser setup consists of an Ar+ laser, pumping a ring dye laser
using Pyrromethene 556 as the lasing medium, which is in turn coupled to a
frequency doubler. The hyperfine structure is studied through the atomic fluo-
rescence, detected with the phototubes (5), as a function of the laser frequency
in the reference frame of the beamB :

ν = ν0
1± β√
1− β2

, (3.1)

A One must discriminate the spin polarization from the optical polarization. The latter
describes the behavior of the electromagnetic waves intensity vectors in time.

B This is a specific case of the relativistic Doppler effect ν = ν0(1 − β cos φ)/
p

1− β2,
where φ is the angle between the propagation direction of the radiation and the velocity ~υ of
the observer (β = |~υ|/c).

Table 3.1: ISOLDE yields and half-lifes of neutron-rich Mg isotopes.
Maximum beam intensities of 29,...,33Mg established with the β detection of
the COLLAPS setup. The quoted values represent the number of particles
per proton pulse (ppp) injected in the apparatus and correspond to bunches
of 2.7 × 1013 protons. The β detectors cover ≈ 10 % of the solid angle and
accordingly detect the same fraction of the quoted yields. The half-life of 31Mg
is calculated as the weighted mean from the values in Refs. [53, 54]. The one
of 33Mg is taken from Ref. [55]. The other half-lifes are according to Ref. [53].

29Mg 30Mg 31Mg 32Mg 33Mg

τ1/2 1.30(12) s 335(17) ms 233(16) ms 120(20) ms 90.5(16) ms

ppp ≈ 5× 106 ≈ 2× 106 ≈ 6.3× 105 ≈ 1.8× 105 ≈ 2.3× 104

The long-lived beams were observed as continuous currents on a Faraday cup
at the entrance of the apparatus. These measurements were done with another
target, with a factor of ≈ 2 worse performance, than the one used for the
measurements above. The beam currents correspond to pulses of 1.5 × 1013

protons, every 1.2 s.
27Mg 28Mg

τ1/2 9.458(12) m 29.91(3) h

pA ≈ 40 > 10
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with ν0 being the laser frequency in the space-fixed frame. The signs 〈+〉
and 〈−〉 pertain to anti-collinear and collinear beam-laser alignment (in our
case collinear, therefore the sign 〈−〉 must be considered). Using the energy
increment E − E0 = Uq, one obtains the ratio of the beam velocity over the
speed of light:

β =
|~υ|
c

=

√
1− M2

0 c
4

(Uq +M0c2)2
. (3.2)

Here U is the total acceleration voltage, q is the charge of the ions and M0 is
their rest massA. Hence by scanning U , through varying the potential of the
electrodes (4) in Fig. 3.1, one observes the fluorescence from the transitions of
the hyperfine structure and obtains the energy splittings in accordance with
(2.31). The latter enables the extraction of the hyperfine parameters (2.30)
and (2.32) and consequently the associated nuclear moments through the use
of (2.33) and (2.34).

β-decay spectroscopy and nuclear magnetic resonance demands additional
steps. The laser radiation, now circularly polarized, interacts with the atoms,
when the Doppler-shifted laser frequency (3.1) coincides with a transition of the
hyperfine structure. Optical pumping takes place, polarizing the atomic beam
in the direction of the photons momentum, parallel to an applied weak magnetic
field of ≈ 0.6 mT. The latter is produced by the coils (6) in Fig. 3.1 and has the
purpose of maintaining the atomic orientation. The field is gradually increased
by the magnet (7) to ≈ 0.3 T, perpendicular to the propagation axis, causing
an adiabatic decoupling of the electron and nuclear spins and resulting in a
nuclear polarization (2.60). After an implantation in a crystal (9), the β-decay
anisotropy is monitored with two telescopes of ∆E scintillators (8), placed at 0◦

and 180◦ with respect to the orientation axis. The experimental β asymmetry
(2.63), constructed from the coincidence events, is monitored as a function
of the laser frequency in the reference frame of the beam or as a function of
an external radio frequency field. In this manner one obtains independently
the hyperfine structure, by scanning the total acceleration voltage, and the
nuclear moments, by means of nuclear magnetic and quadrupole resonance.
The combination of the two techniques is used for direct measurements of
ground-state nuclear spins as described in Section 5.3.

3.2 Einstein coefficients

For the purpose of simulating hyperfine-structure spectra, one must calculate
the Einstein coefficients. First consider a two-level atomic system (Fig. 3.2),

A The ion rest mass M0 can be calculated from the atomic mass MA by using MAc2+Ei =
Mec2 + M0c2, where Ei = 7.646238(5) eV is the ionization energy of Mg i from Ref. [56] and
Me is the electron rest mass.
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Aif Bif Bfi

i

f

Ni

Nf

Figure 3.2: Two-level atomic system.

with states denoted by |i〉 (initial) and |f〉 (final) and population densities Ni

and Nf , respectively. The latter represent the number of atoms in a particular
state per unit volume. The probability for a spontaneous decay from |i〉 to
|f〉 per unit time is called the spontaneous emission coefficient or Einstein A
coefficient:

Aif =
dP
(
spontaneous : |i〉 → |f〉

)
dt

. (3.3)

If an atom is subjected into a field with a spectral energy densityA ρ(ν), the
probabilities per unit time for absorption or emission are given by:

ρ(νif )Bfi =
dP
(
absorption : |f〉 → |i〉

)
dt

, (3.4)

ρ(νif )Bif =
dP
(
induced : |i〉 → |f〉

)
dt

. (3.5)

The Einstein’s B coefficients Bfi and Bif are referred to as absorption co-
efficient and induced emission coefficient. Directly from the definitions (3.3),
(3.4) and (3.5) one finds the change in the populations in time:∣∣∣∣∣∣∣

dNi

dt
= −Aif Ni − ρ(νif )Bif Ni + ρ(νif )BfiNf

dNf

dt
= −dNi

dt
,

(3.6)

where the second equation is written shortly with the aid of Ni + Nf = N =
const. The relation between the Einstein coefficients can be derived for an
arbitrary field, for instance a thermal radiation, and since they are constants
that only depend on the atomic properties and not on the field, the result will
be valid in general. In a stationary state dNi/dt = dNf/dt = 0. Thus from
(3.6) directly follows:

ρ(νif ) =
Aif/Bif

Nf

Ni

Bfi

Bif
− 1

. (3.7)

A ρ(ν) dν is the energy deposited in a unit volume in the frequency range dν.



3.2 Einstein coefficients 25

Using the Boltzmann distribution:

Nf

Ni
=
gf

gi
ehν/kT , (3.8)

where gi and gf are the degeneracy factors, and identifying (3.7) with the
Planck’s law:

ρ(ν) =
8πν2

c3
hν

ehν/kT − 1
, (3.9)

for all νif , one arrives with:

Aif =
8πhν3

c3
Bif , (3.10)

Bfi =
gi

gf
Bif . (3.11)

When considering the transitions between the magnetic states |JIFMF 〉 of
the hyperfine structure, the degeneracy factors must be substituted by unity
gi = gf = 1. More information can be found in Ref. [57].

The physical meaning of the A coefficient (3.3) is the number of spontaneous
decays per level per unit time, with other words Aif = −dNif/(Nif dt) = 1/τif ,
where τ−1

if is the decay rate or the inverse lifetime, associated with the transition
|i〉 → |f〉. Lets consider now that the state |i〉 can decay to a number of final
states |fj〉. In this case, generalizing (3.6), the change in the population density
due to the spontaneous decays is dNi/dt = −Ni

∑
j Aij and so the inverse

lifetime of the state |i〉 for decaying to all the states |fj〉 is the sum of the
inversed partial lifetimes. In terms of spontaneous emission coefficients this is:

Ai =
∑

j

Aij =
∑

j

1/τij = 1/τi . (3.12)

The total decay rate between the magnetic components |JIFM〉 of the hyper-
fine structure is given by:

Aif = Cν3 |〈JfIFfMf |D̂λµ|JiIFiMi〉|2 , (3.13)

where D̂λµ (λ = 1, µ = Mf − Mi) represent the spherical components of
the electric dipole moment D and C is a combination of physical constantsA.
Details about polarization and angular distribution of the fluorescence can
be found in Ref. [43]. Since the hyperfine structure splitting is many orders
in magnitude smaller than the energy of the transitionsB , νif = ν can be
considered a constant. Applying the Wigner-Eckart theorem (2.2):

〈JfIFfMf |D̂1µ|JiIFiMi〉 =
(

Ff 1 Fi

−Mf µ Mi

)
〈JfIFf ||D̂1||JiIFi〉 (3.14)

A C = 4α(2π)3/(3c2e2) [43] (p. 307), where α is the fine-structure constant.
B For Mg ii is ∆E(32S1/2)/hν ≈ 10−6.
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and using the reduced matrix element:

〈JfIFf ||D̂1||JiIFi〉 = (−1)Fi+Jf +I+1
√

(2Fi + 1)(2Ff + 1)

×
{
Jf Ff I
Fi Ji 1

}
〈Jf ||D̂1||Ji〉

(3.15)

from Ref. [43] (p. 91), one finds an expression for Aif that can be summed over
all final states:

Aif = Cν3 |〈Jf ||D̂1||Ji〉|2

× (2Fi + 1)(2Ff + 1)
(

Ff 1 Fi

−Mf µ Mi

)2{
Jf Ff I
Fi Ji 1

}2 (3.16)

Using (3.12) and following the sum rules (A.17) and (A.22) one finds the decay
rate of the initial state:

1
τi

=
∑

Mf µ Ff

Aif = Cν3 |〈Jf ||D̂1||Ji〉|2

(2Ji + 1)
. (3.17)

Remarkably, this result does not depend on Fi and Mi and therefore all the
states in the |Ji〉 multiplet are associated with the same lifetime τ = τi. Ex-
perimental values for Mg ii can be found in Ref. [58]:

τ(32P1/2) = 3.854(30) ns , τ(32P3/2) = 3.810(40) ns .

Substituting (3.17) into (3.16) yields a final expression for the spontaneous
emission coefficient:
Aif = τ−1(2Ji + 1)(2Fi + 1)(2Ff + 1)

×
(

Ff 1 Fi

−Mf Mf −Mi Mi

)2{
Jf Ff I
Fi Ji 1

}2 (3.18)

From the properties of the 3j and 6j symbols immediately follow the selection
rules for electric dipole radiation:

|Jf − Ji| ≤ 1 ≤ Ji + Jf ⇒ ∆J = 0 , ±1 ∧ Ji + Jf 6= 0 (3.19)
|Ff − Fi| ≤ 1 ≤ Fi + Ff ⇒ ∆F = 0 , ±1 ∧ Fi + Ff 6= 0 (3.20)

∆M = 0 , ±1 (3.21)

3.3 Simulation of optical spectra
The absorption cross section equals the absorbed energy per unit time divided
by the intensityA of the incoming radiation:

σ(ν) =
Bfi ρ(ν)hν

I
. (3.22)

A The intensity I is the power of the radiation source per unit area.
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An expression for σ(ν) can be derived from the optical Bloch equations [59]
(p. 137-140). It is of the form:

σ(ν) = Aif
c2

8πν2
0

1
π

Γ/4π
(ν − ν0)2 + (Γ/4π)2

, (3.23)

where Γ/ 2π = τ−1/ 2π is the natural linewidth of the decaying state and ν0 is
the transition frequency. Having the coefficients Aif (3.18) and

Dif(fi) = Bif(fi) ρ(ν) , (3.24)

through (3.22) and (3.23), one can write the rate equations (3.6) for the mul-
titude of initial and final states |JiIFiMi〉 and |JfIFfMf 〉:∣∣∣∣∣∣∣∣∣∣∣
Ṅi = −Ni

g−1∑
j=g′

(Aij +Dij) +
g−1∑
j=g′

NjDji , ∀ i = 0 , 1 , . . . , g′ − 1

Ṅi =
g′−1∑
j=0

Nj(Aji +Dji)−Ni

g′−1∑
j=0

Dji , ∀ i = g′ , g′ + 1 , . . . , g − 1

(3.25)

The degeneracy factorsA of the two states are g′ = (2I + 1)(2Ji + 1) and
g′′ = (2I+1)(2Jf +1). The total number of states is g = g′+g′′. The notation
|i〉 and |f〉 is abandoned in (3.25), since the aim is to write this system of linear
differential equations with constant coefficients in the form:

Ṅ = M̂ ·N , (3.26)

where N is the vector of the population densities, Ṅ = dN/dt and M̂ is a g×g
matrix. Electric dipole radiation within any of the multiplets is forbidden by
the parity selection rule. Thus one can formally write:∣∣∣∣ 0 ≤ i ≤ g′ − 1

0 ≤ j ≤ g′ − 1 ∨
∣∣∣∣ g′ ≤ i ≤ g − 1
g′ ≤ j ≤ g − 1 ⇒ Aij = Dij = 0 (3.27)

Using (3.27), the more general form of (3.25) becomes:∣∣∣∣∣∣∣∣∣∣∣
Ṅi = −Ni

g−1∑
j=0

(Aij +Dij) +
g−1∑
j=0

NjDji , 0 ≤ i ≤ g′ − 1

Ṅi =
g−1∑
j=0

Nj(Aji +Dji)−Ni

g−1∑
j=0

Dji , g′ ≤ i ≤ g − 1 .

(3.28)

A The degeneracy factor represents the number of magnetic states in a hyperfine multiplet
g =

PJ+I
F=|J−I|(2F + 1) = (2I + 1)(2J + 1).
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Figure 3.3: Total decay rate of 25Mg ii (I = 5/2, A < 0) in the D1 and D2

lines, (a) and (b) respectively.
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Figure 3.4: Total decay rate of 27Mg ii (I = 1/2, A < 0) in the D1 and D2

lines, (a) and (b) respectively.
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Figure 3.5: Total decay rate of 29Mg ii (I = 3/2, A > 0) in the D1 and D2

lines, (a) and (b) respectively.
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The only difference with (3.25) is that the summing now goes over the total
number of states. Hence, the matrix M̂ has the explicit form:

Mij
0≤i≤g′−1

=
{
Dji ,

Dji −
∑g−1

k=0(Aik +Dik) ,
j 6= i
j = i

Mij
g′≤i≤g−1

=
{
Aji +Dji ,

Aji +Dji −
∑g−1

k=0Dki ,

j 6= i
j = i

(3.29)

One can solve the system of differential equations (3.26) and find the popula-
tion densities, which finally enables the calculation of the total decay rate per
unit volume, regardless of the polarization and the angular distribution of the
fluorescence:

R =
∑

0≤i≤g′−1
g′≤j≤g−1

NiAij . (3.30)

The solution of the system differential equations (3.26) can be obtained
numerically. A procedure for calculating the population densities has already
been implemented in a computer code and outlined in Ref. [12]. Following
similar procedure, the code presented in Appendix B.1 is developed indepen-
dently. It provides for the first time facilities to perform realistic simulations
of fluorescence spectra. The hyperfine parameters for the simulated spectra of
25,27Mg ii in Figs. 3.3 and 3.4 are taken from Tab. 4.1 and Tab. 4.3. The pa-
rameters of 29Mg ii are calculated with the aid of (2.33) and the g factors from
Tab. 5.2 and Ref. [60]. The B factor is substituted with the lower value given in
Section 5.5. The other parameters in (B.1), apart from the quantum numbers,
are given the following values: ν0 from Ref. [56], τ - from Ref. [58], B = 0,
Il = 80 W/m2 and ∆M = 0 - linear polarization. The most valuable applica-
tion of the realistic rate function (B.1) is that it correctly accounts for the effect
of simultaneously pumping in two different transitions, which is of significant
importance for Mg ii in the D2 line (32S1/2 → 32P3/2), where the transitions
are not completely resolved - Fig. 3.3 (b), Fig. 3.4 (b) and Fig. 3.5 (b). Fur-
thermore it automatically yields the transition strengths and the effect of the
laser intensity. These are considered in details in Section 3.4 and Section 3.5,
respectively.

3.4 Transition strengths
Looking at Figs. 3.3, 3.4 and 3.5 one makes a notice that the strongest transition
in the D2 line (32S1/2 → 32P3/2) is stronger, with the same factor for the
different spins, than the strongest transition in the D1 (32S1/2 → 32P1/2)
line. It is often useful to know the transition strengths without doing the
time-consuming calculations described in Section 3.3. Lets consider now that
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the optical lines are resolved, so that one can neglect the effect of pumping
simultaneously several transitions. Consider also that the external radiation is
polarized. Then the excitation of only one magnetic state Mf = Mi− p, where
p = −1, 0, 1 is the laser polarization, will cause a population of the state Mi.
Hence one can write the rate equation for this state in the following way:

Ṅi︸︷︷︸
0

= −Ni

∑
Mf µ Ff

(Aif +Dif )︸ ︷︷ ︸
≈Aif︸ ︷︷ ︸

=1/τ

+NfDfi , (3.31)

where there is no summing over the term the most to the right. In a steady state
Ṅi = 0. The final, but most important consideration is that Aif � Dif = Dfi,
which enables the transformation of the second term to just −Ni/τ . This
quantity, taken with the opposite sign, gives the decay rate per unit volume of
the Mi state. Finally summing over all Mi states, effectively summing on both
Mi and Mf , since they are locked together by the laser polarization (Mf =
Mi − p), one finds the total decay rate per unit volume:

R = Nf

∑
Mi Mf

γAif . (3.32)

The dimensionless quantity γ is the ratio, between induced and spontaneous
emission Dfi = Dif = γAif . It can be calculated explicitly from equations
(3.22), (3.23) and (3.24):

γ =
Ic2

8πh νν2
0︸︷︷︸

≈ν3
0

1
π

Γ/4π
(ν − ν0)2 + (Γ/4π)2

. (3.33)

According to the Boltzmann distribution, the population densities Nf are al-
most equal. Since the degeneracy of the state is g′′ = (2I + 1)(2Jf + 1) ⇒
Nf = N/g′′. Finally, using the sum rule (A.17), one arrives with the decay
rate per atom:

R
N

=
γ

3τ
(2Ji + 1)(2Fi + 1)(2Ff + 1)

(2I + 1)(2Jf + 1)

{
Jf Ff I
Fi Ji 1

}2

. (3.34)

Take a note that everywhere in this thesis |i〉 is the excited state. The indexes
i (initial) and f (final) are given relative to the spontaneous emission (Aif :
i→ f). One can comprehend the transition intensities in Figs. 3.3, 3.4 and 3.5
based on the expression (3.34). It can easily be calculated with the tools given
in Appendix A.4.
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3.5 Power broadening

The line shape of the optical lines is governed by the Lorentzian profile of the
absorption cross section (3.23). It was considered in Section 3.4 that the spon-
taneous emission is much faster than the induced emission. Thus, whenever
a state is populated a quick spontaneous decay brings the atom to a lower
state, maintaining the population of the excited state negligible. Lets consider
a two-level system again Fig. 3.2. In a steady state the amounts of emission
and absorption are equal:

Ṅi︸︷︷︸
≈0

= −Ni(Aif +Dif ) +NfDfi . (3.35)

If one substitutes (3.22) and (3.24) into (3.35) one obtains the relation:

R = NiAif =
Iσ(ν)
hν

(Nf −Ni) . (3.36)

If one eliminates Nf with the aid of Ni +Nf = N , after some rearrangements
one arrives with the decay rate per atom:

R
N

=
Iσ(ν)
hν

1

1 +
2Iσ(ν)
Aifhν

. (3.37)

There are two Lorentzian profiles in this formula entering through σ(ν). The
quantity Isat(ν) = Aifhν/2σ(ν) is called saturation intensity, although this
term is more often used for the saturation intensity at resonance I0 = Isat(ν0).
One can rearrange (3.37) in the final form:

R
N

=
Iσ(ν0)
hν0

(Γ/4π)2

(ν − ν0)2 +

 Γ
4π

√
1 +

I

I0

2 . (3.38)

Outside the Lorentzian the substitution ν ≈ ν0 is made. One now realizes
that the profile (3.38) is again a Lorentzian profile, but its full width at half
maximum (FWHM) is increased by a factor of

√
1 + I/I0. Thus, performing

experiments at a low intensity I � I0 ensures spectral linewidths equal to the
natural linewidth Γ/2π. If the amount of power becomes considerable, one can
still use the Lorentzian profile as the best approach to experimental data. The
power broadening (3.38) has been confirmed experimentally [61].
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3.6 Doppler broadening
The decay rate (3.38) was derived regardless of the motion of the atoms. If
there is a velocity distribution along the axis of propagation f(υz), the resonant
frequency will be different for every velocity fraction (3.1), causing an additional
broadening. In such a case (3.38) must be written in a differential form:

dR = L(ν − ν0) dN , (3.39)

where the function L(ν − ν0) represents the line profile (3.38) and

dN = Nf(υz) dυz . (3.40)

In this case N represents the particle density in the atomic beam. Here it
was already pointed out that a way of removing the broadening due to the
velocity spread is by producing an atomic beam, accelerated to speeds much
larger than those associated with the thermal atomic motion. Since the function
f(υz) represents the density of particles with the same speed, it will be the same
before and after the acceleration. Thus one can write f(υz) = f ′(υz)+f ′(−υz),
where f ′(υz) is the Maxwell distribution for one velocity component, which is
basically a Gaussian distribution, leading to:

f(υz) = 2
√

m

2πkT
e
−
m(υ2

z − υ2
0)

2kT . (3.41)

Here the energy conservation mυ2
z/2 = mυ′z

2
/2 + Uq was used to express the

velocity component υ′z in the target with the minimum beam velocity υ0 =√
2Uq/m and υz (0 ≤ υ0 ≤ υz). Using the classical limit of (3.1):

ν = νL(1− υz/c) (3.42)

and substituting (3.40) into (3.39) one arrives with:

R
N

= 2
√

m

2πkT
e

mυ2
0

2kT
∫ ϑ�c

υ0

L
[
νL

(
1− υz

c

)
− ν0

]
e
−
mυ2

z

2kT dυz . (3.43)

With the substitution (3.42) one can write this integral in the form:

R
N

= 2
c

νL

√
m

2πkT
e

mυ2
0

2kT
∫ νL(1−υ0/c)

ξ�0

L(ν − ν0) e
−
mc2(ν − νL)2

2kTν2
L dν . (3.44)

R/N must be considered as a function of either υ0 or νL. FWHM of the
Gaussian under the integral (3.44) for νL = ν0 is called the Doppler width:

ΓD = 2
√

2 ln 2
ν0
c

√
kT

m
. (3.45)
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Figure 3.6: Simulated lineshape for 24Mg ii in the D1 line with Doppler effect
according to (3.43) and (3.44). Target temperature T = 2000◦C. Acceleration
tension U = 60 kV.

The Doppler width is much larger than the natural linewidth (ΓD � τ−1/ 2π).
However, by looking at (3.43) one realizes that since the Gaussian is centered
at υz = 0 and the integral is in the interval [υ0, ϑ� c) it will only be influenced
by the tail of the Gaussian, which is almost flat close to υ0, and thus the two
Gaussian factors will cancel out to a large extent. With other words, the larger
the beam velocity the smaller the Doppler contribution. One must make a note
that the lineshapes (3.43) and (3.44) are asymmetric due to the fact that υz ≥
υ0. The integral (3.43) is numerically solved, using Bode’s rule [49, 50], and
plotted in Fig. 3.6 as a function of the Doppler-shifted laser frequency relative
to the transition frequency in 24Mg ii [56]. The laser frequency was taken
such that 24Mg ii, with an energy of 60 keV, would have maximum absorption
(would be in resonance). Fig. 3.6 ilustrates several facts. (i) The lineshape is
Lorentzian-like; (ii) At acceleration voltage and target temperature U = 60 kV
and T = 2000◦C, typical for the ISOLDE facility, the asymmetry in the line
is small; (iii) There is a considerable shift of a few MHz of the resonance
frequency; However since all the components of the hyperfine structure shift
by a similar amount, this is not crucial for the determination of their relative
distances. Furthermore, broadening occurs in the opposite direction as well,
since a considerable fraction of atoms is ionized outside the target-line cavity
at a lower potential. Thus the best approach to experimental data is the Voigt
profile, which is considered in Section 3.7.
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3.7 Voigt profile
A motivation for using the Voigt profile for describing the optical lineshapes
was laid out in Section 3.6. A normalized Voigt:

V (x; σ, ΓL) =
∫ +∞

−∞
G(t; σ)L(x− t; ΓL) dt , (3.46)

is a convolution of normalized Gaussian and Lorentzian profiles:

G(x; σ) =
1

σ
√

2π
e−x

2/2σ2
, ΓG = 2σ

√
2 ln(2) ; (3.47)

L(x; ΓL) =
1
π

ΓL/2
x2 + (ΓL/2)2

. (3.48)

The integral (3.43) would indeed have been a Voigt function if the integration
limits were extending from −∞ to +∞. The numerical handling of (3.46)
is time-consuming, thus triggering the development of numerical methods for
approaching the Voigt with a superposition of other symmetric single-peak
functions as described in Refs. [62, 63]. The FWHM, according to Ref. [62], is
given with the expression:

ΓV = (Γ5
G + 2.69269 Γ4

GΓL + 2.42843 Γ3
GΓ2

L

+ 4.47163 Γ2
GΓ3

L + 0.07842 ΓGΓ4
L + Γ5

L)1/5 ,
(3.49)

The analysis of the optical spectroscopy data, described in this thesis, involved
the use of the extended pseudo-Voigt function. It approximates (3.46) with
a superposition of Gaussian, Lorentzian, irrational and hyperbolic functions.
The numerical procedure is described in Ref. [63]. A numerical implementation
of this procedure is given in Appendix B.2.

3.8 Nuclear polarization with optical pumping
The process of optical pumping is based on the fact that polarized radiation
is associated with a specific selection rule for the increment of the magnetic
quantum number. The two orientations of the circular polarization, referred as
σ± radiation, induce excitations with ∆M = ±1. A specific example is drawn
in Fig. 3.7. The thick arrows represent the process of excitation with ∆M = 1
(σ+) in a transition Ff = 1 → Fi = 2, between the hyperfine component of
two multiplets. The laser power is assumed to be small, such that the induced
emission can be neglected. The deexcitation under this assumption is com-
pletely governed by the spontaneous emission, with relative rates determined
by the squared 3j symbol in (3.18). The population of the excited states can be
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Figure 3.7: Optical pumping in a transition F : 1 → 2 with σ+.

neglected compared to the population of the lower state. The process described
in Fig. 3.7 leads to the depopulation of the states with Mf = −1, 0 and filling
the state Mf = 1, thus producing an atomic orientation. In the case of consid-
erable power density there would be an induced emission Mi = 0 → Mf = 1,
competing with the spontaneous decay, but only increasing the effect on the
atomic orientation. However the disadvantage of working in this mode is the
resolution deterioration due to the power broadening.
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Figure 3.8: Magnetic field effect on the hyperfine structure magnetic substates
in 32S1/2 for I = 3/2, A < 0 and 0 ≤ B � |A|/µN .
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Figure 3.9: Simulated hyperfine structure of 29Mg ii (I = 3/2, A > 0), with σ−
(a) and σ+ (b) laser polarization, in the D1 line. Plotted is the experimental
β asymmetry A with Aβ = 0.15.
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Figure 3.10: Simulated hyperfine structure of 29Mg ii (I = 3/2, A > 0), with
σ− (a) and σ+ (b) laser polarization, in the D2 line. Plotted is the experimental
β asymmetry A with Aβ = 0.15.
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Figure 3.11: Simulated hyperfine structure of 31Mg ii (I = 1/2, A < 0), with
σ− (a) and σ+ (b) laser polarization, in the D1 line. Plotted is the experimental
β asymmetry A under the assumption that Aβ = −1.
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Figure 3.12: Simulated hyperfine structure of 31Mg ii (I = 1/2, A < 0), with
σ− (a) and σ+ (b) laser polarization, in the D2 line. Plotted is the experimental
β asymmetry A under the assumption that Aβ = −1.
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Figure 3.13: Simulated hyperfine structure of 33Mg ii (I = 3/2, A < 0), with
σ− (a) and σ+ (b) laser polarization, in the D1 line. Plotted is the experimental
β asymmetry A under the assumption that Aβ = −1.
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Figure 3.14: Simulated hyperfine structure of 33Mg ii (I = 3/2, A < 0), with
σ− (a) and σ+ (b) laser polarization, in the D2 line. Plotted is the experimental
β asymmetry A under the assumption that Aβ = −1.
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When performing spectroscopy based on the β-decay anisotropy and NMR,
as explained in Sections 2.5 and 3.1, the amplitudes of the resonances are de-
termined by the amount of nuclear polarization (2.60). The procedure for cal-
culating the population of the magnetic components of the hyperfine levels was
described in Section 3.3. After such a calculation one needs to translate the
atomic into nuclear level populations, in order to calculate the polarization.
The effect on the atomic energies, caused by the increment of the magnetic
field in sections (6) and (7) of the apparatus (Fig 3.1), is demonstrated in
Fig. 3.8. Since the natural linewidth is smaller than the energy shifts, shortly
after approaching the section with the strong magnetic field the optical pump-
ing is interrupted, due to the change in the resonance frequency. Since the
decoupling of the nuclear and atomic angular momenta is relatively quick, no
relaxation process will cause any considerable change in the population of the
atomic states. Thus the population of a MF state is exactly equal to the
population of the corresponding MI state, describing the level at high fields
(Fig. 3.8). Make a note that in Fig. 3.8 the energy levels in the strong field
limit, described by (2.38), are drawn with the assumption |A| � BµN , such
that the nuclear splitting is neglected. The latter is done for the simplification
of the figure and does not have an effect on the considerations above.

The first code for simulating polarization spectra was developed by M. Keim
for Na i and outlined in Ref. [12]. The code presented in Appendix B.3 is devel-
oped independently, based on the same formalism. The realistic polarization
function (B.3) was used to simulate the spectra of 29,31,33Mg ii in Figs. 3.9,
3.10, 3.11, 3.12, 3.13 and 3.14. The magnetic hyperfine parameters are calcu-
lated with the aid of (2.33) from the parameters of 25Mg ii (Tab. 4.1) and the
g factors from Tabs. 5.2, 5.2 and 5.4. The quadrupole hyperfine constant of
33Mg ii in the D2 line is neglected for the simulations. In the case of 29Mg ii
the B parameter is substituted with the lower value established in Section 5.5
and the β-asymmetry parameter is calculated from the branching fractions in
Ref. [53] with the use of Tab. 2.1. The guiding field in the optical pumping
section and the laser intensity are taken to be 6× 10−4 T and 80 W/m2.

The initial work on Mg ii is described in the thesis of M. Kowalska [16].
It has not been realized at that time that the MF and MI states must be
associated in a different way for A < 0 and A > 0. The inconsistencies in the
σ± assignments and the sign of the β-asymmetry parameter of 31Mg between
this dissertation and Ref. [16] are due to omitting this fact in the latter work.



Chapter 4

Optical spectroscopy

The theoretical basis of optical spectroscopy is developed in Chapter 3, together
with some specific problems concerning the appropriate lineshapes for data
analysis, simulations of optical spectra, etc. The content of this chapter is
restricted to the experimental results and their interpretation.

4.1 Hyperfine structure of stable Mg ii

This section considers 25Mg ii, whose experimental hyperfine parameters are
latter used for the investigation of the radioactive Mg isotopes. A discussion
on the isotope-shifts between the stable 24,25,26Mg ii, extracted from the same
set of data, is given in the thesis of M. Kowalska [16].

The transitions: 32S1/2 → 32P1/2 and 32S1/2 → 32P3/2, known as the
D1 and D2 lines, are studied. Their excitation energies, corresponding to
280.353(79) nm and 279.635(78) nm [56], are in the ultraviolet region. 24Mg ii
(I = 0), being the most abundant of the three isotopes 78.99 %, is the natural
choice for a frequency reference. Typical spectra of 25Mg ii (I = 5/2), which
is the only stable atom in the chain with a hyperfine structure, are presented
in Fig. 4.1. There is a remarkable agreement with the theoretical simulations
in Fig. 3.3. A sophisticated procedure for fitting experimental data can be
based on the realistic rate function, developed in Section 3.3. The latter would

Table 4.1: Hyperfine parameters of 25Mg ii (I = 5/2) in MHz.
A(32S1/2) A(32P1/2) A(32P3/2) B(32P3/2)

−596.54(26) −102.65(45) −18.99(32) 23.7(10)
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Figure 4.1: Hyperfine structure of 25Mg ii (I = 5/2) in the D1 and D2 lines,
(a) and (b) respectively. The fitted curves consist of Lorentzian profiles (3.48).
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Table 4.2: Magnetic hyperfine parameters ratios for Mg ii.
A(32P1/2)/A(32S1/2) A(32P3/2)/A(32S1/2)

0.17208(43) 0.03183(53)

have been beneficial mostly in the D2 line, where the transitions are not re-
solved. However, using conventional Lorentz lineshapes (3.48) was considered
the most adequate way of fitting numerous spectra with a good precision. In
the D2 line A(32S1/2) was fixed to the value extracted in the D1 line, in order
to obtain reliable results on the hyperfine parameters of the excited state. The
experimental values are presented in Tab. 4.1. The magnetic moment of 25Mg
must be negative, since the ratio A/g is positive for alkali-like atoms [42]. This
sign has been confirmed by a measurement with another technique [64]. The
ratios of the magnetic hyperfine parameters, which are important inputs to the
problems of fitting unresolved or low-statistics spectra, are given in Tab. 4.2.

4.2 Magnetic moment and hyperfine structure of
27Mg ii

The hyperfine structure of 27Mg ii was studied in the D1 line. A spectrum,
representing one third of the total statistics, is plotted in Fig. 4.2. A comparison
with the theoretical curves in Figs. 3.3 (a) (I = 5/2), 3.4 (a) (I = 1/2) and
3.5 (a) (I = 3/2) provides a clear evidence that the nuclear spin of 27Mg is I =
1/2. Not only the lack of a fourth transition, but also the transition strengths
unambiguously point to the latter spin assignment, hence confirming the value
from the literature [65]. The solid line in Fig. 4.2 represents a fitting function
consisting of three Voigt profiles (3.46). The latter was handled numerically
with the procedure from Section 3.7. The Doppler width was extracted from
the spectra of the reference 24Mg ii and corrected with the factor

√
m24/m27,

according to (3.45). The ratio of the A factors was fixed to the value from
Tab. 4.2 in order to involve both weak transitions in the determination of
the ground-state splitting. The results from the individual measurements are

Table 4.3: Hyperfine parameters of 27Mg ii (I = 1/2) in MHz.
A(32S1/2) A(32P1/2)

−1432.0(46) −246.4(10)
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Figure 4.2: Hyperfine structure of 27Mg ii (I = 1/2) in the D1 line. The scale
is relative to the resonance frequency of 24Mg ii.

presented in Tab. A.4. The hyperfine structure of 27Mg ii in the D1 line is
characterized by the parameters given in Tab. 4.3. The uncertainties are mainly
statistical. Using the A factor of 25Mg ii from Tab. 4.1, which is in agreement
with the precise value −596.254376(54) MHz [66], one obtains the magnetic
moment of the 27Mg ground state through the use of (2.33). The doublet of
lines in Fig. 4.2 are on the higher-frequency side of the spectra, revealing that
the sign of the A factor is negative. As a result the sign of the magnetic moment
is also negative, since the A/g ratio for alkali-like atoms is positive [42]. The
results on the nuclear properties of 27Mg are summarized in Tab. 4.4.

In the extreme shell-model picture, the ground-state properties of 27
12Mg15

are determined by an odd neutron in the ν 2s1/2 orbital, with a single-particle

Table 4.4: Nuclear ground-state properties of 27Mg.
I = 1/2 g = −0.8214(26) µ = −0.4107(13)µN
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Figure 4.3: Magnetic moments of the even-odd N = 15 isotones (I = 1/2).
The solid line connects the experimental values. The uncertainties are smaller
than the dots. The dashed line follows the theoretical predictions. The exact
values are given in Tab. 4.5.

magnetic moment µ(ν 2s1/2) = −1.91µN , according to (2.7). The experimental
spin and sign of the magnetic moment, given in Tab. 4.4, are consistent with
the suggested configuration. However, the magnitude of the magnetic moment
is significantly smaller, indicating that the ground-state configuration is rather
mixed, including a considerable contribution from the positive Schmidt value
orbitals ν 1d3/2, π 1d5/2, π 2s1/2 and π 1d3/2. The present result completes
the set of experimental magnetic moments of the even-odd N = 15 isotones
(I = 1/2) from 25Ne to 33Ar [60, 67, 68]. Complex shell-model calculations
are carried out for the entire sequence in the sd model space with the code

Table 4.5: Experimental (µexp) and theoretical (µth) magnetic moments of the
even-odd N = 15 isotones (I = 1/2).

µexp(µN ) µth(µN )
25Ne −1.0062(5) a −0.85
27Mg −0.4107(13)b −0.42
29Si −0.55529(3)c −0.50
31S −0.48793(8)c −0.40
33Ar −0.723(6) d −0.72

aFrom Ref. [67]; bTab. 4.4 - this work; cFrom Ref. [60]; dFrom Ref. [68];



50 Optical spectroscopy

Oxbash [69], using the USD Hamiltonian [70]. The results are presented in
Tab. 4.5 and in Fig. 4.3. The agreement theory-experiment is satisfactory in
all cases. The increase in the magnitude of the 25Ne and 33Ar moments is
due to the fact that there are only two protons (proton holes) in the sd shell,
leading to less mixed configurations and hence moments closer to the neutron
Schmidt value for the ν 2s1/2 orbital (−1.91µN ). The experimental spin-parity
assignments 1/2+ → 3/2+ → 5/2+ → 5/2+ corresponding to the states at
0 → 984.66 → 1698 → 1940 keV [53] in 27Mg are in good agreement with
the calculations, predicting these levels at 0 → 895 → 1667 → 1978 keV.
Experimentally the first negative-parity state in 27Mg is at 3559.5 keV [53],
signifying that the pf shell plays a role in the energy spectrum close to 3 MeV
and above. The results of this chapter will be discussed in Ref. [33].



Chapter 5

β-decay spectroscopy and
nuclear magnetic resonance

The theoretical basis of laser spectroscopy is laid down in Chapter 3, with
the specific subject of nuclear polarization with optical pumping described in
Section 3.8. Information on the topic of NMR lineshapes in the presence of a
frequency modulation can be found in Section 2.6. This chapter is dedicated
to the β spectroscopy of the odd-mass 29,31,33Mg, concentrating the discussion
mainly on the experimental results and their interpretation.

5.1 Magnetic moments of 29,31Mg
The magnetic moments of 29,31Mg are essential quantities for the nuclear-
structure understanding in the region of the Island of inversion. The case
of 31Mg is presented in a number of publication [15, 30, 31], which are included
at the end of this dissertation. Both cases are discussed in the PhD thesis of
M. Kowalska [16]. A reevaluation of the magnetic moments is performed here,
after an offset in the frequency scale by one channel was recently discovered.
The improvement of the results precision has no influence on the conclusions
in the above publications.

Polarized beams of 29,31Mg and 8Li were implanted into a MgO crystal
during a period of 82 hours and NMR measurements were performed. Typical
spectra can be found in Refs. [15, 16, 30, 31]. 8Li with its well-known magnetic
momentA [71] is used to calibrate the magnetic field. The reevaluated Larmor
frequencies are presented in Tab. 5.1. A source of systematic uncertainty is

A Ref. [71] provides the ratio: ν(8Li)/ν(1H) = 0.1480045(21), which combined with
the proton magnetic moment µ(1H) = 2.792847337(29) µN from [35] yields µ(8Li) =
1.653547(29) µN . Diamagnetic corrections are taken into account according to Ref. [60].
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Table 5.1: NMR frequencies of 8Li and 29,31Mg (weighted mean of the indi-
vidual measurements for each isotope).

8Li 29Mg 31Mg

ν (kHz) 1806.940(12) 1423.98(86) 3859.624(42)

the possible magnetic-field drift over the time period mention above. The
electric current through the poles of the magnet was monitored with a high-
precision voltmeter measuring the tension over a calibrated resistance. The
difference between the minimum and maximum voltage recorded during the
measurements over the average voltage yields a relative error ∆U/U = 5.5 ×
10−5. Another source of systematic uncertainty is the inhomogeneity of the
magnetic field within the area of implantation. If considerable, this effect would
result in a change in the Lorentzian NMR lineshape. The resonances of 31Mg
and 8Li are of high quality (Fig. 5.1, [30]) allowing lineshape analysis. The
latter showed that there is no detectable Gaussian component in the spectra,
making a strong argument that the effect of the inhomogeneity is much smaller
than the width of the resonances. The drift on the other hand, which is within
the relative error of 5.5×10−5, is a significant fraction of the FWHM (as much as
15% compared to the narrowest resonances), making it the dominant source of
systematic uncertainty in the NMR measurements. The final results for 29,31Mg
are presented in Tab. 5.2. The error in the square brackets is the systematic
uncertainty, which is comparable with the statistical error only for the high-
precision moment of 31Mg and negligible in the case of 29Mg. The matter of
finding the total probability density distribution rising from the statistical and
systematic uncertainties is extensively discussed in Appendix A.1. Tab. A.1
contains confidence levels associated with a total error on the 31Mg magnetic
moment of up to 5 × 10−5 µN . The spin-parity assignments to the ground
states of 29,31Mg are presented in Tab. 5.2. These are based on the β-decay
work from Refs. [19, 20, 72], in the case of 29Mg, and hyperfine structure and
nuclear magnetic resonance measurements on both isotopes [16], which confirm

Table 5.2: Nuclear ground-state properties of 29,31Mg.
29Mg 31Mg

Iπ 3/2+ 1/2+

g 0.6520(4) −1.76710(3)[10]
µ (µN ) 0.9779(6) −0.88355(2)[5]
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the spin of 29Mg and establish spin 1/2 for the ground state of 31Mg. The case
of 31Mg is extensively discussed in the publications attached at the end of
this dissertation [15, 30, 31]. Typical HFS and NMR spectra are presented in
Fig. 5.1.

5.2 31Mg: transition to the Island of inversion

While the neutron rich Mg isotopes up to 30Mg are well understood in their
ground states within the sd shell modelA, 31Mg is the first one in the chain
with ground-state properties incompatible with that description. Having four
protons and eleven neutrons above the core of 16O, 31Mg was originally ex-
pected to have a ground-state configuration according to the subsequent filling
of the orbitals forming the sd shell - ν 1d5/2, ν 2s1/2 and ν 1d3/2. In this pic-
ture the ground-state is largely determined by the odd neutron in the ν d3/2

orbital, demanding spin and parity Iπ = 3/2+ and a single-particle magnetic
moment close to the Schmidt value µ = 1.15µN . Contrary to this concept
the experimental spin is I = 1/2 [15]B . Moreover, the magnetic moment has
the opposite sign (see Tab. 5.2). The spherical shell model could account for
such behavior only by promoting two neutrons to the pf shell. Large-scale
shell-model calculations described in Ref. [15] show that the lowest 2p-2h con-
figuration does indeed have the correct spin and magnetic moment close to
the experimental value, making a strong argument that the ground state of
31Mg is a pure intruder state. Under this description the largest fraction of
the wave function involves a single neutron on the ν s1/2 orbital with Schmidt
value µ = −1.91µN , which gives a simplified explanation of why the spin is
1/2 and the magnetic moment is negative. However, the magnitude of the
magnetic moment can only be understood within the full calculations, since
the wave function is rather mixed being considerably influenced also by the
positive single-particle g factor of the ν d3/2 orbital. Another qualitative pic-
ture comes from the fact that the calculated g factor of the 1/2+ state in 29Mg
with the USDB interaction (Tab. 5.10) is very close to the experimental value
for the 31Mg ground state (Tab. 5.2), giving an indication that the two neu-
trons in the pf shell are mostly coupled to zero angular momentum and it is
mainly the proton-neutron arrangement within the sd shell that determines
the ground-state properties of 31Mg. The fact that in the calculations pre-
sented in [15] the 2p-2h states are higher in energy than the 0p-0h and 1p-1h
configurations is directly related to the size of the N = 20 shell gap, which
appears to be strongly reduced for the Mg isotopes. In the Nilsson model pic-

A The cases of 27,29Mg are developed in Sections 4.2 and 5.5, respectively. These will be
the main subjects of Ref. [33]. 29Mg is extensively described in Ref. [16]. 30Mg is placed
outside the Island of inversion according to Ref. [73].

B Included at the end of this dissertation.
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Figure 5.1: HFS of 31Mg ii in the D2 line and NMR in the strongest transition.
Notice that the labels σ± are inverted compared to those in Refs. [15, 16, 31],
where they are wrongly assigned.

ture the ground state of 31Mg is associated with a large prolate deformation
based on the 1/2 [200] orbital. The odd-neutron occupation is represented by
the segment (a) in Fig. 5.4.

The complete resemblance of the experimental spectra of 31Mg in Fig. 5.1
with the theoretical simulations in Fig. 3.12 proves that the β-asymmetry pa-
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rameter of 31Mg is negative. This conclusion is based on the fact that the
theoretical procedure described in Section 3.8 yields the nuclear polarization,
which in turn must be multiplied by the β-asymmetry parameter Aβ to obtain
the observable experimental β asymmetry (2.63). The simulated spectra are
drawn under the condition Aβ = −1, thus proving that the polarization must
be inverted in order to reproduce the experimental spectra. From the measured
branching ratios for populating excited states in 31Al via the β decay of 31Mg
[54], using the rules in Tab. 2.1 one calculates Aβ = −23 % , which is consis-
tent with the considerations above. However, the latter calculation strongly
depends on the spin assignments to the states in 31Al, which are partly estab-
lished through a comparison with shell-model calculations.

31Mg is the first isotope in the chain with an intruder ground state. The
strong impact on the nuclear structure understanding in the vicinity of the
Island of inversion, drawn from data of exceptional quality, highlights 31Mg as
one of the emblematic cases in the region.

5.3 Spin and magnetic moment of 33Mg

The central results of the present doctoral dissertation, namely the spin and
magnetic moment of 33Mg, are discussed in this section. The following text
contains a description of the analysis procedures and an interpretation of the
results, consistent with all available studies of this nucleus. An alternative
discussion is presented in a publication in preparation [32] the full text of
which is included at the end of this thesis.

Inside the Island of inversion different particle-hole excitations coexist at
low energies, making it difficult to predict which configuration will become the
ground state. This information needs to be obtained experimentally. A β-decay
study of 33Na [25] suggests a 1p-1h configuration for the 33Mg ground state with
spin and parity Iπ = 3/2+ in contrast to Iπ = 5/2+ (also 1p-1h) from inter-
mediate energy Coulomb excitation [26] and proton inelastic scattering [27]
experiments. The systematics of the nuclear moments in the region [28], on
the other hand, is consistent with 2p-2h ground states. Theoretical and experi-
mental studies of the neighboring even-even Mg isotopes [9, 10, 21, 24] support
this observation. The above discrepancy in the ground-state spin assignment
of 33Mg and the diminishing predictive power of the shell model in the Island
of inversion serve as a primary motivation for the experimental investigations
described below.

The experimental studies are realized in the D2 line (279.635(78) nm for Mg
[56]), which involves the transitions from 32S1/2 to 32P3/2 hyperfine multiplets,
shown in Figs. 5.2 (a) and (e). The experimental spectra of 33Mg ii, obtained
with σ∓ laser polarization are displayed in Figs. 5.2 (b) and (c), respectively.
The frequency scale is given relative to the fine-structure splitting of the refer-
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Figure 5.2: (a) Principle hyperfine structure in the D2 line for I = 3/2 and A <
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Figure 5.3: NMR spectrum of 33Mg in MgO (zoom of Fig. A.3 (b)).

ence 31Mg ii (I = 1/2) [15]. The distance between the two groups of resonances
in 33Mg ii is determined by the splitting ∆E in the 32S1/2 multiplet. This direct
observable is a function of the nuclear spin and the magnetic dipole hyperfine
parameter: ∆E = |A| (I + 1/2). Neglecting the hyperfine anomaly, the ratio
A/g, where g is the nuclear g factor, is constant for all the isotopes in the chain.
This ratio can be calculated from the experimental A and g available for the
stable 25Mg ii (I = 5/2) [64, 66]. A g-factor measurement is therefore sufficient
to extract the hyperfine parameter of 33Mg ii and unambiguously determine the
nuclear spin from the measured hyperfine splitting. Magnetic resonance mea-
surements are carried out with σ− laser polarization in the higher frequency
triplet of transitions, as indicated in Fig. 5.2 (b), after implantation in the
cubic crystal lattice of MgO (fcc)A or Pt (ccp)B . The produced experimental
asymmetry is ≈ 2 %. A radio-frequency field of a few tenths of a mT is ap-
plied perpendicular to the static magnetic field B ≈ 0.3 T. An example NMR
spectrum of 33Mg in MgO obtained with a small circular frequency modulation
with an amplitude of 1 kHz is presented in Fig. 5.3. The total statistics includes
spectra of similar quality in Pt. All independent measurements are presented

A fcc - face centered cubic.
B ccp - cubic close packed.
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Table 5.3: NMR frequencies of 33Mg in Pt and MgO, corresponding to the
magnetic field during the reference measurements from Tab. 5.7, and the g-
factor ratio g(33Mg)/g(31Mg) = ν(33Mg)/ν(31Mg).

Pt MgO

ν(33Mg) (kHz) 1084.22(76) 1082.41(42)
g(33Mg)/g(31Mg) 0.28159(20) 0.28121(11)

in Appendix A.2 together with detailed information on the analysis procedure.
The reference probe 31Mg [15] was implanted in both hosts in order to extract
the ratio of the Larmor frequencies (2.54), which is independent of the chemical
and Knight shifts. The results are presented in Tab. 5.3, which contains two
independent values of the ratio g(33Mg)/g(31Mg). Their weighted mean is used
to calculate the g factor of 33Mg based on the reference 31Mg (Tab. 5.2). The
g factor in combination with the hyperfine splitting determines nuclear spin
I = 3/2. The ground-state properties of 33Mg are summarized in Tab. 5.4.
Since the systematic uncertainty is significantly smaller than the statistical er-
ror, the total error is formed as the sum of the two, yielding the final result
|µ| = 0.7456(5)µN . The confidence level associated with the latter uncertainty
is ≈ 76 %, as presented in Tab. A.2.

The experimental HFS spectra in Figs. 5.2 (b) and (c) are fitted with the
theoretical polarization function, described in Section 3.8. The actual fitting
has the main purpose of demonstrating the consistency between theory and
experiment. Due to the low resolution and power broadening, the nuclear qua-
drupole moment and β-asymmetry parameter can not be extracted. However,
there are important conclusions to be drawn from the realistic polarization
function, namely the negative signs of the magnetic hyperfine parameter and
the β-asymmetry parameter. The latter is perhaps easier to comprehend by
comparing the experimental with the simulated spectra in Fig. 3.14 (A < 0,
Aβ < 0). A change in the sign of A would invert left and right and a sign
change of Aβ inverts up and down.

There is an independent way to confirm the negative sign of the hyperfine
parameter. With the use of the total mass shift from Ref. [16] one estimates the
isotope shift δν33,31 = 1867 MHz. The uncertainty on this number, including

Table 5.4: Nuclear ground-state properties of 33Mg.
I = 3/2 g = −0.4971(3)[1] µ = −0.7456(4)[1]µN
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Table 5.5: Gyromagnetic ratios and quadrupole moments of different particle-
hole excitations in 33Mg (I = 3/2), calculated with the interactions WBMB [3]
and SD - PF [74]. Free-nucleon g factors and effective charges eπ = 1.5e and
eν = 0.5e are used.

WBMB SD - PF

n ~ω Iπ gfree Q (mb) gfree Q (mb)

0 3/2− −1.47 −83 −1.35 −91
1 3/2+ 0.75 135 0.78 140
2 3/2− −0.45a 147b −0.47a 157b

aExperimental gyromagnetic ratio from this work g = −0.4971(3)[1] (see Tab. 5.4).
bQ(βC) = 151(38) mb, calculated from βC (see the text).

the errors on the mass shift and an unknown change between the mean-square
charge radii, is estimated to be smaller than 50 MHz, which can be neglected
for the considerations below. Based on the isotope shift one can plot the
fine-structure splitting of 33Mg ii relative to the transitions of the hyperfine
structure, the so-called “ center of gravity ”. The latter is represented by the
alternating dash-dot line in Fig. 5.2. Closer to the center of gravity are always
the transitions starting from the higher angular momentum state F = I +
1/2, which can be verified with the aid of (2.31). In the case of 33Mg ii their
resonances appear at the higher frequency side of the spectra, revealing that
they start from the lower energy level. The higher angular momentum states are
lower in energy only for a negative magnetic hyperfine parameter (2.31). Since
the ratio A/g is positive for all alkali-like atoms [42], the ground-state nuclear
magnetic moment of 33Mg is negative. The sign of the A factor is demonstrated
in Fig. 5.2, where the relative energies of the hyperfine-structure levels in 32S1/2

are represented by the vectors A(I+1)/2+ε < 0 and −AI/2+ε > 0 (|ε| � |A|).
Their direction towards the frequency axis demands A < 0.

The ground-state of 33
12Mg21 is suggested in Ref. [25] to have a 1p-1h intruder

configuration, with spin and parity Iπ = 3/2+. In the extreme shell-model
picture the properties of such a state are determined by an odd neutron in the
ν 1d3/2 orbital with a positive single-particle magnetic moment (2.7). In order
to explain the negative sign of µ, an odd number of neutrons must occupy the
pf shell, as these have negative Schmidt values for the orbitals ν 1f7/2 and
ν 2p3/2. The parity of such states is negative, thus providing evidence for a
negative ground-state parity of 33Mg. Large-scale shell-model calculations are
carried out in the sd−pf model space with the code Oxbash [69], using the
Hamiltonians [3, 74] designed particularly to describe the Island of inversion.
Mixing of states with a different number of particle-hole excitations (~ω) is
not considered. The neutron configuration space is reduced to ν (sd−1f7/2−
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Table 5.6: Energy levels of 33Mg, calculated with the interactions WBMB
[3] and SD - PF [74]. The configuration denoted with 〈?〉 is identified as the
ground state (see Tab. 5.5).

n ~ω Iπ EWBMB
a (keV) E SD− PF

a (keV)

0 1/2− 241711 449012

0 3/2− 7373 237410

0 5/2− 18949 428411

0 7/2− 01 17106

1 1/2+ 208210 19218

1 3/2+ 3992 2832

1 5/2+ 12385 11875

1 7/2+ 15548 17387

2 1/2− 323212 22989

? 2 3/2− 10654 01 ?
2 5/2− 13276 4033

2 7/2− 14817 6814

aThe top energy index denotes the level ordering.

2p3/2). Two out of four valence protons are fixed in the π 1d5/2 orbital. The
other two are confined within the sd shell. Calculated nuclear moments of 0,
1 and 2 ~ω excitations for I = 3/2 are presented in Tab. 5.5. Clearly, the
experimental g factor is only consistent with the 2p-2h configuration. The
good agreement between the experimental and theoretical magnetic moments,
demonstrated in Tab. 5.5, indicates that the ground state of 33Mg is a nearly
pure 2p-2h intruder. Indeed, the 2p-2h 3/2− level is the lowest in the calculation
with the SD - PF Hamoltonian from Ref. [74], as shown in Tab. 5.6. The
theoretical calculations presented Tabs. 5.5 and 5.6 demonstrate an important
fact. While the excitation energies of corresponding states computed with the
two Hamiltonians are very different from each other, their nuclear moments
are rather consistent, highlighting the relevance of comparing experimental
moments with theory.

The charge and matter deformations of 33Mg are experimentally determined
to be βC = 0.52(12) [26] and βM = 0.47(8) [27], which appear to be consistent
with the deformation parameters of the neighboring even-even 32,34Mg [10, 21,
23, 24]. One can use βC to evaluate the spectroscopic quadrupole moment of
33Mg through (2.16), (2.17) and (2.22) for I = K = 3/2. Hence, under the
assumption of an axial symmetry the result is Q = 151(38) mb. This value
is in agreement with the established 2p-2h configuration, as demonstrated in
Tab. 5.5.

In the frame of the Nilsson model the established spin and parity of 33Mg
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Figure 5.4: Nilsson diagram in the ν (sd−1f7/2−2p3/2) configuration space.
The segments (a) and (b) represent the odd neutron occupation in the ground
states of 31,33Mg, respectively.

(Iπ = 3/2−) are consistent with a large prolate deformation and ground-state
properties determined by a single-particle occupation of the 3/2 [321] orbital
- the segment (b) in Fig. 5.4. This range is consistent with the deformation
of 31Mg, as suggested in Ref. [15], represented in Fig. 5.4 by the segment (a)
of the 1/2 [200] orbital. It is relevant to support these findings by comparing
the experimental magnetic moments with calculated values from the Nilsson
model. This requires a knowledge on the composition of the Nilsson wave
functions. Since the configuration mixing coefficients are not available one
can roughly estimate which spherical states contribute the most by looking at
Fig. 5.4. Thus, large fractions of ν f7/2 and ν p3/2 are expected into the single-
particle wave function of the odd neutron in 33Mg and therefore a single-particle
g factor (2.21) in between the corresponding Schmidt values (divided by j)A.
With the use of (2.19) one calculates the expectation boundaries for the nuclear
magnetic moment of 33Mg to be −0.27 ≤ µ(33Mg)/µN ≤ −0.93. Although this
estimate is very rough, it correctly reproduces the sign and the magnitude of the
magnetic moment (Tab. 5.4), thus independently supporting the establishment
of the nuclear deformation according to the segment (b) of the 3/2 [321] orbital.
In the case of 31Mg, with I = 1/2, the magnetic moment depends additionally

A The single-particle g factors are obtained by dividing the Schmidt values (2.7) to the
total angular momentum quantum number j of the spherical state.
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on the magnetic decoupling parameter b [2] (2.20). Taking into account the
contribution of ν s1/2 and ν d3/2 to the prolate side of the 1/2 [200] orbital,
one calculates the boundaries for the magnetic moment of 31Mg to be −1.7 ≤
µ(31Mg)/µN ≤ −0.17, being consistent with the experimental value in Tab. 5.2.

The results from studying the β-decay of 33Na, as described in Ref. [25],
are summarized in Fig. 5.5. The obtained branching fractions with the corre-
sponding log ft values, as well as tentative spin-parity assignments based on
large-scale shell-model calculations are presented next to the level scheme. The
existence of the 159 keV level appears to be an unsettled feature of the scheme.
This state is suggested to be an isomer, since its decay to the ground state has
not been observed within a β-γ coincidence window of 500 ns.

The conclusions from the β-decay work have not been supported by Cou-
lomb excitation [26] and proton inelastic scattering [27] experiments. The lat-
ter two studies consistently provide evidence that the parity of the 484 keV
level is identical to the parity of the ground state. This level is suggested
in Ref. [26] to be a rotational excitation, thus having one unit of angular
momentum higher than the ground state and a similar intrinsic structure.
Since the 546 keV gamma has only been detected in the neutron knockout
reaction 1H(34Mg, 33Mg γ) and not in the proton inelastic scattering process
1H(33Mg, 33Mg γ), described in Ref. [27], it is concluded that this transition
originates from a state with a parity opposite to the parity of the ground state.
These experimental facts contradict with Ref. [25] (Fig. 5.5). In the context of
the firm spin-parity assignment to the ground state Iπ = 3/2− established in
the present work, the experimental results from Refs. [25–27] allow to propose
a modified level scheme, as presented in Fig. 5.6 (see the text below). In order
to have an isomeric state at 159 keV, with a lifetime longer than 500 ns, an
angular momentum of at least two units larger than the one of the ground
state is required, demanding a spin assignment I = (7/2). If the 484 keV level
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Figure 5.5: 33Mg level scheme, established in the β decay of 33Na, with ten-
tative spin-parity assignments according to Ref. [25]. The 159 keV level is not
experimentally observed.
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Figure 5.6: Modified decay scheme of 33Mg with suggested spin-parity assign-
ments, based on the firm assignments to the ground state.

has one unit higher angular momentum than the ground state and the same
parity, resulting in spin-parity assignment Iπ = (5/2)−, the transition to the
isomeric state should also be observed, since it would have the same multipo-
larity (L = 1) as the transition to the ground state. It is therefore more likely
that the 546 keV gamma is associated with a state at that energy, not a decay
to an isomeric state. The branching fractions to the 705 keV and 546 keV levels,
presented in Fig. 5.6, are recalculated, based on the γ intensities from Ref. [25].
The error on the log ft values to these states includes the uncertainties on the
branching ratios and the half-life of 33Na. The uncertainty on the electrons
kinetic energy is not taken into account. The large feeding to the ground state
of 33Mg suggested in Ref. [25] (Fig. 5.5) is unlikely, considering a first forbidden
β transition. Here 33Na is regarded as having 3/2+ or 5/2+, either 0p-0h or
2p-2h ground state, based on analogy with 31Na (Iπ = 3/2+ [6]) and shell-
model calculations [25]. An indirect confirmation of this assertion comes from
the fact that the 484 keV level, which has a negative parity, is weakly fed in
the β decay.

The most likely interpretation of the available experimental evidence is
that the observed excited states in 33Mg rise from two rotational bands -
one based on a single-particle state with Kπ = 3/2− (3/2 [321]) and an-
other with Kπ = 1/2+ (1/2 [200]). This interpretation would explain the
spin change between 31Mg (Iπ = 1/2+) and 33Mg (Iπ = 3/2−) with a rel-
ative movement of the two bands when adding two neutrons. In the case of
Kπ = 3/2−, with the use of (2.18), one can calculate the moment of inertia
and consequently the energy of the next member of the band. The result is
EK=3/2(I = 7/2) = 1162 keV. In the case of Kπ = 1/2+, using the theoreti-
cal value for the decoupling parameter aβ=0.4 = −0.615 from Ref. [2] (vol. 2,
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p. 290), one calculates EK=1/2(I = 5/2) = 1271 keV. In both cases the com-
puted energies are close to the experimental level at 1243 keV, as it is demon-
strated in Fig. 5.6, where the calculated energies are represented by the dashed
lines. Since the log ft value associated with the 1243 keV level is relatively
low, one tends to assign this state to the band with Kπ = 1/2+. However,
belonging to the other band is not completely excluded. The tentative spin-
parity assignments in Fig. 5.6, proposed according to this interpretation, are
consistent with the recalculated log ft values.

Recent results on the β decay of 33Mg are presented in Ref. [75]. The
ground-state spin and parity of the daughter 33Al are known to be Iπ = 5/2+

(mostly 0p-0h configuration), derived through a comparison of shell-model cal-
culations with a g factor measurement [17]. Inelastic nuclear scattering [76]
further suggests spin parity-assignment Iπ = 5/2+ (2p-2h configuration) to
the observed excited state at 730(50) keV. In the β decay of 33Mg no feeding to
states below 1.6 MeV has been detected, which is consistent with the conclu-
sions of the latter two studies since the 5/2+ levels would be populated from
the 3/2− ground state of 33Mg with first forbidden β transitions. The nuclear
structure of the excited states in 33Al above 1.6 MeV is unknown. The large
feeding to these levels needs to be understood in the context of the present
work.

5.4 Solid-state aspects of NMR

NMR measurements of 33Mg were performed in two cubic crystals - Pt (ccp)
and the MgO (fcc). The magnetic field in both hosts was calibrated by the
NMR resonances of 31Mg, yielding the Knight shift of Mg in Pt. The Knight
shift was calculated from the frequencies, given in Tab. 5.7, by solving the
system: ∣∣∣∣ h νMgO = g µN B0 (1− σ12)

h νPt = g µN B0 (1− σ10 +K) , (5.1)

where g and B0 represent the nuclear g factor and the external magnetic field
and σ12 and σ10 account for the diamagnetic shielding of the localized elec-
trons in the two hosts. Since the valence electrons in a metal are no longer

Table 5.7: NMR frequencies of 31Mg in Pt and MgO crystals and the Knight
shift of Mg in Pt.

νPt (kHz) νMgO (kHz) K

3850.40(16) 3849.05(20) 3.4(7)× 10−4
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Figure 5.7: Relaxation times of 31Mg in Pt and MgO at room temperature.

localized they will only contribute to the Knight shift. Theoretical values for
the shielding factors σ12 and σ10 are given in Refs. [60, 77]. The temperature
dependence of the spin-lattice relaxation (SLR) time T1 in metals is given by:

T1 T =
~

K2g2(me/mp)2k π
, (5.2)

known as the Korringa relation [78]. The constant factor on the right side
is determined by the nuclear g factor and the Knight shift. Example spectra
of 31Mg relaxation in Pt and MgO crystals are shown in Fig. 5.7 and the re-
sults of both sets of measurements are presented in Tab. 5.8. With the use of
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Table 5.8: Relaxation times of 31Mg in Pt and MgO at room temperature and
external magnetic field B = 0.28596(3) T.

Pt MgO

T1 (ms) 80(8) 395(63) T = 293(5) K

T1 T (Ks) 23.4(23) 116(9)

(5.2) and the experimental g and K from Tab. 5.2 and Tab. 5.7 one calculates
T1 = 80(32) ms. This value is in agreement with the direct determination of the
asymmetry decay constant in Pt at room temperature, presented in Tab. 5.8.
The quantity T1 T g

2, according to (5.2), should be isotope independent, as long
as the Knight shift is isotope independent. However, measurements of the SLR
of 23Mg in Pt, reported in Ref. [79], established T1 T g

2(23Mg) = 213(18) Ks,
to be compared with the present result T1 T g

2(31Mg) = 73(7) Ks. The latter
difference can not be attributed to a field dependence of T1 since the measure-
ments performed at 0.27 T and 0.4 T, described in Ref. [79], are consistent.
Another possibility is a different orientation of the host crystal in respect to
the external field in the two experiments (see Ref. [48]). The above discrepancy
is not understood until now.

5.5 Quadrupole moment of 29Mg

The level scheme of 29Mg is established in the β-decay of 29Na [19, 20, 80].
The ground-state spin-parity assignment Iπ = 3/2+ [19, 20, 72] is based on
experimental branching fractions to known states in 29Al. The hyperfine struc-
ture and nuclear magnetic resonance measurements on 29Mg ii, described in
Refs. [16], determine the nuclear magnetic moment and independently confirm
the spin. The sign of the magnetic moment, as in the cases of 31,33Mg, is an
experimental fact based on the hyperfine structure. The results are summa-
rized in Tab. 5.2. The possibilities for extracting additional information from
the hyperfine structure, namely the quadrupole moment and ground-state de-
formation, are discussed in this section. The experimental spectra of 29Mg ii in
the D2 line strongly resemble the theoretical curves plotted in Fig. 3.10. The
β-asymmetry parameter Aβ = 15 %, substituted in the simulations, is calcu-
lated from the branching fractions in Ref. [53] with the use of Tab. 2.1. The
experimental β asymmetry in Fig. 5.8 is a factor of two smaller than the pre-
diction from the theoretical function. The major reason is perhaps the long
half-life τ1/2 = 1.30(12) s [19, 20, 81], comparable with the relaxation time
T1(29Mg) = 0.59(23) s in MgO at room temperature, calculated with use of
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Table 5.9: Quadrupole hyperfine parameter of 29Mg ii in 32S3/2, obtained with
the use of the realistic polarization function (R) and Lorentz profiles (L), with
the corresponding quadrupole moments and deformation parameters.

K = 1/2 K = 3/2

B (MHz) Q (mb) Q0 (mb) β Q0 (mb) β

R −23.2(22) −195(20) 975(100) 0.58(6) −975(100) −0.73(9)
L −15.1(19) −126(17) 630(85) 0.39(5) −630(85) −0.45(7)

(5.2). The cluster of the lower energy transitions with σ+ laser polarization
gives the highest experimental asymmetry and relative amplitudes suitable for
extraction of the hyperfine parameters of the excited state. The positions of the
three lines (two energy gaps) completely determine the A and B factors. This
is one of the experimental evidence for the positive sign of the A factor and
consequently the positive magnetic moment. The independent experimental
spectra are fitted with the realistic polarization function from Appendix B.3
and using the natural lineshape (3.48). The two fit functions can be compared
in Figs. 5.8 (a) and (b). The value of A is obtained independently through the
relation (2.33) and substituted as a constant parameter. At low laser power the
transition F : 2 → 2 is the strongest (Fig. 3.10). The fact that experimentally it
is weaker than the transition F : 2 → 3 is evident for oversaturation and simul-
taneous optical pumping in the neighboring transitions. These effects are also
causing the broadening and change in the lineshape of the middle resonance.
While the theoretical curve reproduces well these experimental features it fails
to account precisely for the relative asymmetry in the transition F : 2 → 1. The
fit function in Fig. 5.8 (b) is a sum of three Lorentzian profiles with amplitudes
set as free parameters. This simple approach is unable to account for pumping
in multiple transitions. Thus, the Lorentzian profiles become too broad and
the transitions in the fit function less resolved than they are experimentally. As
a result both fitting procedures converge to a similar χ2. The obtained values
for the B parameter are given in Tab. 5.9. The large discrepancy in the two
numbers signifies the importance of the line profiles for the analysis of optical
and polarization spectra. It will be postulated here that the difference in the
obtained B factors is a measure for the systematical uncertainty associated
with the choice of the fitting function. Thus, with the use of (2.34) and the
quadrupole moment of 25Mg from Ref. [82], one calculates an expectation range
for the spectroscopic quadrupole moment Q ∼

(
−195(20) mb , −126(17) mb

)
.

Such an inaccurate estimate is expected to have a minor impact on the un-
derstanding of the nuclear structure of 29Mg. However, one can state with
confidence that the sign of the quadrupole moment is negative as well as quan-
titatively estimate the nuclear deformation, using relations (2.22) and (2.16).
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Figure 5.8: The cluster of lower energy transitions within the hyperfine struc-
ture of 29Mg ii (I = 3/2, A > 0) in the D2 line fitted with: (a) The realistic
polarization function from Appendix B.3; (b) Lorentzian profiles;

The results are presented in Tab. 5.9.
In the particle plus rotor model the ground state of 29Mg, with spin and

parity Iπ = 3/2+, is built on a single-particle state, based either in the 3/2 [202]
or 1/2 [200] Nilsson orbitals (Fig. 5.4). The second option requires a decoupling
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Table 5.10: Gyromagnetic ratios and quadrupole moments of the two lowest
states in 29Mg, calculated with the interactions USD [70] and USDB [83]. Free-
nucleon g factors and effective charges eπ = 1.5e and eν = 0.5e are used.

USD USDB

Iπ E (keV) gfree Q (mb) E (keV) gfree Q (mb)

1/2+ 0 −2 45 −1.65
3/2+ 40 0.64a −109b 0 0.71a −110b

aExperimental gyromagnetic ratio from this work g = 0.6520(4) (see Tab. 5.2).
bQ ∼

`
− 195(20) mb , −126(17) mb

´
(see the text).

parameter a < −1 in order to invert the energies of the first two members
of the rotational band and have the 3/2+ state as the ground state. Even
precisely known, the spectroscopic quadrupole moment is not associated with
a particular intrinsic deformation. This is clearly demonstrated in Tab. 5.9,
where under the assumption of different K one arrives with either positive
or negative β. The study presented in Ref. [72] suggest prolate ground-state
deformation. Under this condition the two lowest levels in 29Mg, according to
the estimates in Tab. 5.9 for K = 1/2, are associated with deformation similar
to the one of 31Mg. This supports the earlier argument that similar magnetic
moments are to be expected for the first excited state in 29Mg and the ground
state of 31Mg.

Shell-model calculations are carried out in the sd model space with the code
Oxbash [69], using the Hamiltonians USD [70] and USDB [83]. The results for
the two lowest levels in 29Mg are presented in Tab. 5.10. The USD interaction
generates a g factor closer to the experimental value (Tab. 5.2), but fails to
account for the inversion of the two states. The USDB interaction is successful
in predicting the correct level ordering. It also suggests a g factor for the
1/2+ level close to the experimental value of the ground state in 31Mg. There
a is strong experimental evidence that negative parity states occur in 29Mg
already close to 1 MeV [84, 85]. This is an indication that the orbitals of the
pf shell play a role in the low-energy spectrum of 29Mg. However, the magnetic
moment is well reproduced within the sd shell, meaning that the presence of
2p-2h excitations in the ground-state wave function can be neglected. The sign
of the theoretical quadrupole moment is negative, being consistent with the
considerations above.
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Chapter 6

Conclusions and outlook

Tab. 6.1 summarizes the experimental results presented in this dissertation.
The magnetic moments of 27,33Mg and the spin of 33Mg are reported for the first
time, completing a sequence of ground-state studies of neutron rich Mg isotopes
towards the Island of inversion. Thus, laser spectroscopy in combination with
nuclear magnetic resonance provide valuable probes for the development of the
theoretical models in this region. The spin-parity assignments to the ground
states of 27,29Mg are confirmed and no influence from the orbitals of the pf shell
in their wave functions is found. However, particle-hole excitations do play a
role in the energy spectra of these two isotopes, since negative-parity states
are found around 3 and 1 MeV, respectively [53, 84, 85]. Coulomb excitation
studies [10, 73] appear to be consistent with the sd shell-model description of
30Mg. The transition to the Island of inversion therefore occurs at 31Mg, which
was found to have a nearly pure 2p-2h intruder ground state [15]. The spin and
magnetic moment of 33Mg are the key results of this work, determining a 2p-2h
ground-state configuration and correspondingly a negative parity. This result
is consistent with a large prolate deformation, based on the 3/2 [321] Nilsson
orbital. The outcome of the present work is combined with former experimental
studies [25–27, 75] under a coherent physical picture. Tentative spin-parity

Table 6.1: Spins and magnetic moments of 27,29,31,33Mg.
27Mg 29Mg 31Mg 33Mg

Iπ 1/2+ 3/2+ 1/2+ 3/2−

µ (µN ) −0.4107(13) 0.9779(6) −0.88355(2)[5] −0.7456(4)[1]
n ~ω 0 ~ω 0 ~ω 2 ~ω 2 ~ω
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assignments are made to the known excited states and an interpretation within
the particle plus rotor model is proposed.

The ground-state spin of 29Mg is consistent with an odd-neutron occupation
based either on the 3/2 [202] or 1/2 [200] Nilsson orbitals. The second option de-
mands a decoupling parameter a < −1 in order to invert the 1/2 and 3/2 states
and arrive with the correct level ordering. Hyperfine structure measurements
of 29Mg ii in the D2 line are performed for the purpose of determining the nu-
clear spin and achieving maximum nuclear orientation for NMR measurements.
These conditions are not optimal for quadrupole moment measurements due
to the power broadening resulting in a poor resolution. A theoretical study of
the polarization and optical lineshapes, described in Chapter 3, is beneficial for
estimating the quadrupole moment under these conditions. A negative value
was determined, resulting in either prolate or oblate deformation for K = 1/2
or 3/2, respectively, thus being consistent with the predictions from the Nilsson
model. The knowledge on which is the true configuration must be extracted
from other studies.

Laser spectroscopy and nuclear magnetic resonance further than 33Mg are
presently impossible, due to the low production rates. Optical measurements
with the current apparatus demand beam intensities in the pA range. In order
to extract root mean-square charge radii of nuclei close to the borderline of the
Island of inversion, one must either improve the efficiency of the optical detec-
tion or combine optical with β-decay spectroscopy. Technical capabilities for
applying the second alternative are currently available at COLLAPS (Fig. 3.1).
However, this is a new technique in terms of data analysis. The work described
in Chapter 3 is considered an important step in the development of this tech-
nique. The first alternative is by no means neglected. A recent developments
on the side of ISOLDE, namely the installation of a cooling and bunching de-
vice [86], will be highly beneficial for the laser spectroscopy at COLLAPS. The
bunching will remove a significant part of the laser background and the velocity
spread will be reduced, improving the resolution. An off-line ion source will al-
low isotope-shift measurements on stable isotopes for calibration and technical
improvements without interfering with other experiments.

The study of NMR lineshapes with modulation described in Section 2.6
enables the interpretation of experimental data collected under specific exper-
imental conditions. It is another inseparable piece of work associated with the
presented doctoral research.



Appendix A

Specialities

A.1 Systematic error and total probability den-
sity distribution

In this section the problem of obtaining the total probability density distri-
bution from the distributions of the statistical and systematic uncertainties
will be considered. Suppose the quantity x has the experimental value x0 and
statistical and systematic errors σ and δ, respectively. This is usually noted
with x = x0(σ)[ δ ]. The probability of finding the true value in the interval
(x, x+ dx) is:

p(x; x0, σ, δ) dx =
∑
x′

pδ(x′; x0, δ) dx′ pσ(x; x′, σ) dx , (A.1)

where pσ(x; x0, σ) and pδ(x; x0, δ) are the probability density distributions
associated with σ and δ, and p(x; x0, σ, δ) is the overall resulting distribution.
The meaning of (A.1) is that the probability of finding the true value in the
interval (x, x+ dx) equals to the sum over all possible values of the product of
the probabilities of finding the true value in the interval (x′, x′+dx′), according
to one of the distributions, and of finding it in the interval (x, x+dx) according
to the other, now centered on x′ (not x0). It is straightforward to write (A.1)
in the continuous case:

p(x; x0, σ, δ) =
∫ ∞

−∞
pδ(x′; x0, δ) pσ(x; x′, σ) dx′ . (A.2)

It is easy to verify that if both errors are normally distributed, according to
(3.47)A, the overall distribution is again a normal distribution with a standard

A Attention must payed to the fact that the Gaussian profile (3.47) is given centered
around x0 = 0. For the purposes in this section x must be substituted with x− x0.
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Figure A.1: Probability densities for the magnetic moment of 31Mg. (1) The
normal distribution of the statistical error; (2) The constant distribution of the
systematic error; (3) The total probability density distribution;

deviation:
ζ =

√
σ2 + δ2 . (A.3)

Lets consider now the case of having a constant distribution of the systematic
error:

pδ(x; x0, δ) =
{

1/2 δ , x ∈ [x0 − δ, x0 + δ]
0 , x ∈ (−∞, x0 − δ) ∪ (x0 + δ, ∞) , (A.4)

while the statistical error is normally distributed. Substituting (3.47) and (A.4)
into (A.2) yields the total probability density distribution:

p(x; x0, σ, δ) =
1
4 δ

[
erf
(
x0 + δ − x

σ
√

2

)
+ erf

(
x0 − δ − x

σ
√

2

)]
, (A.5)

where erf(x) is the so-called error functionA. Often the statistical and system-
atic errors are combined in one number, usually through the relation (A.3) or
simply by summing the two errors. In any case, one is obliged to associate
the quoted error with a certain confidence level. This can be done by integrat-
ing p(x; x0, σ, δ), given in the most general case with (A.2), in the interval

A The error function is defined as: erf(x) = 2√
π

R x
0 e−t2dt.
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Table A.1: Confidence levels for the magnetic moment of 31Mg:
µ = −0.88355(ζ)µN

ζ confidence level (%)

1× 10−5 19.7
2× 10−5 38.8
3× 10−5 56.7
4× 10−5 72.1
5× 10−5 84

(x0 − ζ, x0 + ζ), where ζ is the quoted error. Lets consider now the magnetic
moments of 31,33Mg, with their uncertainties, from Tab. 5.2 and Tab. 5.4. The
exact probability distributions (3.47), (A.4) and (A.5) of 31Mg are drawn in
Fig. A.1. This case is chosen for an illustration, because the systematic error
dominates and there is a significant difference, between the plotted functions.
Calculated confidence levels, associated with the experimental magnetic mo-
ments of 31,33Mg, are given in Tab. A.1 and Tab. A.2.

Table A.2: Confidence levels for the magnetic moment of 33Mg:
µ = −0.7456(ζ)µN

ζ confidence level (%)

1× 10−4 18.5
2× 10−4 36
3× 10−4 51.7
4× 10−4 65
5× 10−4 75.8

A.2 Individual NMR measurements on 33Mg

All independent NMR spectra of 33Mg are presented in Figs. A.2, A.3 and A.4.
The measurements with small frequency modulation (Figs. A.2 and A.3) are
fitted with the Lorentzian profile (3.48). The spectra in Fig. A.4 are obtained
with modulation significantly larger than the natural linewidth. The purpose
ot these was to locate the resonance and establish a narrower range for the con-
sequent measurements. They are treated with the theoretical function (2.69)
developed in Section 2.6. The fitting results are presented in Tab. A.3, together
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Figure A.2: NMR of 33Mg in Pt.

with the amplitude M of the frequency modulation. The consistency between
the independent measurements can be verified by comparing the ratio of the
Larmor frequencies of 31,33Mg, which is independent of the magnetic field and
the chemical and Knight shifts. The only value that is more than two stan-
dard deviations away from the most precise measurement is derived from the
spectrum displayed in Fig. A.4 (a). Due to the lack of points on the right wing
of the resonance there could be a systematic deviation in the fit to higher fre-
quencies. The measurements with large modulation are given below the line in

Table A.3: Individual NMR frequencies of 33Mg and calibration frequencies of
31Mg. The ratio ν(33Mg)/ν(31Mg) = g(33Mg)/g(31Mg) is independent of the
magnetic field. The measurements used to obtain the final result are denoted
with 〈?〉 (see the text).

ν(33Mg) (kHz) ν(31Mg) (kHz) g(33Mg)/g(31Mg) M (kHz)

?Fig. A.2 1084.22(76) 3850.40(16) 0.28159(20) 1
?Fig. A.3 (a) 1083.0(12) 3849.05(20) 0.28137(31) 4
?Fig. A.3 (b) 1082.34(45) the same 0.28120(12) 1

Fig. A.4 (a) 1086.3(12) 3851.51(6) 0.28205(31) 20
Fig. A.4 (b) 1086(3) the same 0.28197(78) 10
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Figure A.3: NMR spectra of 33Mg in MgO with small frequency modulation.
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Figure A.4: NMR spectra of 33Mg in MgO with large frequency modulation.
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Tab. A.3. These are not used for obtaining the final result, since the accuracy
of (2.69) has not been verified independently (for instance by measuring NMR
with a large modulation in the reference nucleus and comparing the the result
with those derived from narrow resonance lines). The weighted mean of the
Larmor frequencies is MgO (Figs. A.3 (a) and (b)) and the frequency in Pt
(Fig. A.2) together with the reference frequencies of 31Mg in the same hosts
are displayed in Tab. 5.3. The weighted mean of the two independent ratios
ν(33Mg)/ν(31Mg) = g(33Mg)/g(31Mg) is used to calculate the final value of
the 33Mg g factor.

A.3 Individual HFS measurements on 27Mg ii

The procedure of fitting the fluorescence spectra of 27Mg ii is described in
Section 4.2. The weighted mean of three independent measurements yields the
final value of the ground-state magnetic hyperfine parameter, as presented in
Tab. A.4. Fig. 4.2 corresponds to the first value in the table. The uncertainties
are mainly statistical in origin. The A factor of the excited state is calculated
from the one of the ground state with the use of the ratio A(32P1/2)/A(32S1/2),
given in Tab. 4.2. The final results are presented in Tab. 4.3.

Table A.4: Magnetic hyperfine parameter in the ground state of 27Mg ii from
three independent measurements.

A(32S1/2) (MHz)

−1433.1(85)
−1425.3(80)
−1436.9(73)

weighted mean −1432.0(46)

A.4 Coupling of angular momenta
The coupling of two angular momenta J1 and J2 to the total angular momen-
tum J = J1 + J2 is considered first. The associated quantum numbers must
satisfy the triangle condition:

∆(J1J2J) ≡ |J2 − J1| ≤ J ≤ J1 + J2 . (A.6)

J takes either the integer or the half-integer values in that interval, depending
on J1 and J2, so that J1+J2+J is an integer. The Clebsch-Gordan coefficients:

〈J1M1J2M2|J1J2JM〉 ≡ 〈J1M1J2M2|JM〉 , (A.7)
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whereM1, M2 andM are the projection quantum numbers, are used to transfer
wave functions from |J1J2JM〉 to |J1J2M1M2〉 basis:

|J1J2JM〉 =
∑

M1M2

|J1M1J2M2〉〈J1M1J2M2|J1J2JM〉 . (A.8)

These are real numbers with symmetry properties given by:

〈J1M1J2M2|JM〉 = (−1)J1+J2−J〈J2M2J1M1|JM〉 , (A.9)

〈J1M1J2M2|JM〉 = (−1)J1+J2−J〈J1, −M1J2, −M2|J, −M〉 (A.10)

and

〈J1M1J2M2|JM〉 = (−1)J2+M2

√
2J + 1
2J1 + 1

〈J2, −M2JM |J1M1〉 . (A.11)

Their orthogonality conditions are:∑
JM

〈J1M1J2M2|JM〉〈J1M
′
1J2M

′
2|JM〉 = δM1 M ′

1
δM2 M ′

2
, (A.12)∑

M1M2

〈J1M1J2M2|JM〉〈J1M1J2M2|J ′M ′〉 = δJJ ′δMM ′ . (A.13)

The Clebsch-Gordan coefficients are related to the Wigner’s 3j coefficients by:

〈J1M1J2M2|JM〉 = (−1)J1−J2+M
√

2J + 1
(

J1 J2 J
M1 M2 −M

)
, (A.14)

where M1 +M2 = M . The symmetry properties of the 3j coefficients are given
with: (

J1 J2 J3

M1 M2 M3

)
= (−1)p

(
Ja Jb Jc

Ma Mb Mc

)
, (A.15)

where p = Ja +Jb +Jc when two neighboring columns have been interchanged.
This formula is still valid when the top row is unchanged but the bottom
row inverts its sign (Ma = −M1, Mb = −M2, Mc = −M3). Note that the
3j symbol is defined only if the triangle condition ∆(J1J2J3) is satisfied and
M1 +M2 +M3 = 0, otherwise it equals zero. The orthogonality relations are:∑

JM

(2J + 1)
(

J1 J2 J
M1 M2 M

)(
J1 J2 J
M ′

1 M ′
2 M

)
= δM1 M ′

1
δM2 M ′

2
,

(A.16)∑
M1M2

(2J + 1)
(

J1 J2 J
M1 M2 M

)(
J1 J2 J ′

M1 M2 M ′

)
= δJJ ′δMM ′ . (A.17)
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The 3j symbols, and therefore the Clebsch-Gordan coefficients trough the re-
lation (A.14), can be calculated with the formula:(

a b c
α β γ

)
= (−1)a−b−γ

√
∆(abc) × (A.18)√

(a+ α)! (a− α)! (b+ β)! (b− β)! (c+ γ)! (c− γ)! ×∑
t

(−1)t

t! (c− b+ t+ α)! (c− a+ t− β)! (a+ b− c− t)! (a− t− α)! (b− t+ β)!
,

where the sum is over all integers t for which the factorials have nonnegative
arguments. The triangle coefficient ∆(abc) must be distinguished from the
triangle condition (A.6). It can be calculated with:

∆(abc) =
(a+ b− c)! (a− b+ c)! (−a+ b+ c)!

(a+ b+ c+ 1)!
. (A.19)

In cases of coupling three angular momenta the notation |(J1J2J12)J3JM〉,
adopted from Ref. [37], represents Clebsch-Gordan coupling of J1 and J2 to
J12, which in turn undergoes Clebsch-Gordan coupling with J3 to form J .
Another way of coupling is to combine J2 and J3:

|J1(J2J3J23)JM〉 =∑
J12

|(J1J2J12)J3JM〉〈(J1J2J12)J3JM |J1(J2J3J23)JM〉 . (A.20)

The transformation coefficients in the above relation are independent of the
projection quantum number M . They can be expressed using the Wigner’s 6j
coefficients:

〈(J1J2J12)J3JM |J1(J2J3J23)JM〉 =

(−1)J1+J2+J3+J
√

(2J12 + 1)(2J23 + 1)
{
J1 J2 J12

J3 J J23

}
. (A.21)

An orthogonality condition of the 6j coefficients is:∑
j3

(2j3 + 1)(2J3 + 1)
{

j1 j2 j3
J1 J2 J3

}{
j1 j2 j3
J1 J2 J ′3

}
= δJ3J′3

. (A.22)

Their symmetry properties are:{
j1 j2 j3
J1 J2 J3

}
=
{

ja jb jc
Ja Jb Jc

}
(A.23)
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and {
j1 j2 j3
J1 J2 J3

}
=
{
J1 J2 j3
j1 j2 J3

}
. (A.24)

The 6j symbol, consider the one in the left column, is defined if each of the
triads (j1j2j3), (j1J2J3), (J1j2J3) and (J1J2j3) satisfies the triangle condition
(A.6) and the sum of their elements is an integer number. Otherwise it equals
zero. The 6j coefficients can be computed with the formula:{

a b c
α β γ

}
=
√

∆(abc) ∆(aβγ) ∆(αbγ) ∆(αβc) ×∑
t

(−1)t(t+ 1)!
[
(t− a− b− c)! (t− a− β − γ)! ×

(t− α− b− γ)! (t− α− β − c)! (a+ b+ α+ β − t)! ×

(b+ c+ β + γ − t)! (c+ a+ γ + α− t)!
]−1

. (A.25)

The above relations as well as a detailed description concerning coupling of
angular momenta can be found in Refs. [37, 38, 43, 87, 88].

The aim of this section is to provide the basics for working with Clebsch-
Gordan, 3j and 6j coefficients and, more importantly, to offer a simplified code
for calculating them. Their values are returned by the functions:

CG (J1, M1, J2, M2, J, M) (A.26)
TJ (J1, M1, J2, M2, J3, M3) (A.27)
SJ (j1, j2, j3, J1, J2, J3) , (A.28)

given in the file functions.h included at the end. Conditioning of the input
parameters has been avoided in order to achieve maximum calculation speed.
When using the code below, one should make sure that the input parameters are
correct. CG() and TJ() have a fault if M1+M2−M 6= 0 and M1+M2+M3 6= 0,
respectively. All functions properly give zero when the triangle conditions are
not fulfilled, but have a fault when the input parameters are not integer or half
integer and give a number or could crush due to the term (−1)t.

//*************
//* functions.h *
//*************

//**********<<< maximum >>>**********
double Max(double x, double y){

if(x>y)
return x;

else
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return y;} 10

//**********<<< minimum >>>**********
double Min(double x, double y){

if(x<y)
return x;

else
return y;}

//**********<<< factorial >>>**********
double frl(double n){ 20

double p=fabs(n);
if(p==0)

return 1;
else{

double q=1;
for(double i=1;i<=p;i++)

q=q*i;
return q;}}

//**********<<< triangle coefficient >>>********** 30
double delta(double j1, double j2, double j3){

return frl(j1+j2−j3)*frl(j1−j2+j3)*frl(−j1+j2+j3)/frl(j1+j2+j3+1);}

//**********<<< 3j >>>**********
//********** ( j1 j2 j3 ) **********
//********** ( m1 m2 m3 ) **********
double TJ(double j1, double m1, double j2, double m2, double j3, double m3){

double sum=0;
for(double i=Max(Max(0,j2−j3−m1),m2+j1−j3);

i<=Min(Min(j1+j2−j3,j1−m1),j2+m2);i++) 40
sum=sum+pow(−1,i)

/frl(i)/frl(j3−j2+i+m1)/frl(j3−j1+i−m2)
/frl(j1+j2−j3−i)/frl(j1−i−m1)/frl(j2−i+m2);

return pow(−1,j1−j2−m3)*sqrt(delta(j1,j2,j3)*frl(j1+m1)*frl(j1−m1)
*frl(j2+m2)*frl(j2−m2)*frl(j3+m3)*frl(j3−m3))*sum;}

//**********<<< 6j >>>**********
//********** { j1 j2 j3 } **********
//********** { J1 J2 J3 } **********
double SJ(double j1, double j2, double j3, double J1, double J2, double J3){ 50

double sum=0;
for(double i=Max(Max(j1+j2+j3,j1+J2+J3),Max(J1+j2+J3,J1+J2+j3));

i<=Min(Min(j1+j2+J1+J2,j2+j3+J2+J3),j3+j1+J3+J1);i++)
sum=sum+pow(−1,i)*frl(i+1)

/frl(i−j1−j2−j3)/frl(i−j1−J2−J3)/frl(i−J1−j2−J3)/frl(i−J1−J2−j3)
/frl(j1+j2+J1+J2−i)/frl(j2+j3+J2+J3−i)/frl(j3+j1+J3+J1−i);

return sqrt(delta(j1,j2,j3)*delta(j1,J2,J3)*delta(J1,j2,J3)*delta(J1,J2,j3))*sum;}

//**********<<< Clebsch-Gordan >>>**********
//********** < j1 m1 j2 m2 | j3 m3 > ********** 60
double CG(double j1, double m1, double j2, double m2, double j3, double m3){

return pow(−1,j1−j2+m3)*sqrt(2*j3+1)*TJ(j1,m1,j2,m2,j3,−m3);}
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Appendix B

Numerical functions

B.1 Realistic decay rate function
The code presented in this section uses a fifth order Runge-Kutta method with
variable step size [49, 50]. The function:

rate (ν − ν0, ν0, Agr, Aex, Bgr, Bex,

Jgr, Jex, Lgr, Lex, Sgr, Sex, I, τ, B, Il, ∆M) (B.1)

returns the decay rate per atom R/N . The parameters are as follows: ν - the
transition frequency (MHz), ν0 - the fine structure splitting (MHz), follow the
hyperfine parameters of the two states in MHz and their quantum numbers, I
- the nuclear spin, τ - the lifetime of the decaying state (s), B - the external
magnetic field (T), Il - the laser intensity (W/m2) and ∆M - the polarization
of the laser (-1, 0, 1, 2 - no polarization).

//*************************
//* Optical spectra simulator *
//*************************

#include "functions.h"

//**********<<< constants >>>**********
const double C=299792457.4; //Speed of light (m/s)
const double gL=1; //atomic g factor (muB)
const double gS=2.00232; //atomic g factor (muB) 10
const double muB=9.27408e−24; //Bohr magneton (J/T)
const double h=6.62618e−34; //Planck’s constant (J.s)
const double pi=3.14159265;

//**********<<< calculates the energy of a level relative >>>**********
//**********<<< to the FSLevel of the ground state >>>**********



86 Numerical functions

double Ener(double fst,double L,double S,double J,double I,double F,double M,
double A,double B,double field)//MHz(A and B in MHz, field in T)

{
double cA=F*(F+1)−I*(I+1)−J*(J+1); 20
double cB;
if(I!=0.5 && J!=0.5)

cB=(1.5*cA*(cA+1)−2*I*(I+1)*J*(J+1))/(4*I*(2*I−1)*J*(2*J−1));
else

cB=0;
double gJ,gF;//for the Lande formulas
gJ=gL*(J*(J+1)+L*(L+1)−S*(S+1))/(2*J*(J+1))

+gS*(J*(J+1)−L*(L+1)+S*(S+1))/(2*J*(J+1));
if(F!=0)

gF=gJ*(F*(F+1)+J*(J+1)−I*(I+1))/(2*F*(F+1)); 30
//the nuclear term is neglected

else
gF=0;

return fst+A*cA/2+B*cB+gF*muB*field*M*1.e−6/h;
}

//**********<<< D = B x Rho >>>**********
const double factor=C*C/(32*h*pow(pi,3));
double BxRho(double f0,double f,double Aeg,double G,double Il)
//s-1(MHz,MHz,s-1,s-1,W/m2) 40
{

return factor*Aeg*Il*G/(pow(1.e6*(f−f0),2)+pow(G/(4*pi),2))
/(pow(f0*1.e6,2)*f*1.e6);

}

//**********<<< main function >>>**********
double rate(double f,double fst,double Agr,double Aex,double Bgr,double Bex,

double Jgr,double Jex,double Lgr,double Lex,double Sgr, double Sex,
double I,double lifetime,double field,double Il,double deltaM)
//decays per second per atom(6 x MHz,7 x number,s,T,W/m2,number) 50

{
//**********<<< input parameters >>>**********
const double G=1/lifetime; //FWHM in terms of angular frequency
const double fst gr=0;
int Ngr=int((2*Jgr+1)*(2*I+1));
int Nex=int((2*Jex+1)*(2*I+1));
int N=Ngr+Nex;
double E[100]; //state energy in MHz
double sL[100]; //L
double sS[100]; //S 60
double sJ[100]; //J
double sF[100]; //F
double sM[100]; //M
double A[100][100]; //spontaneous emission coefficient
double AT[100]; //Total decay probability
double D[100][100]; //D = B x Rho, absorption/stim. emission coefficient
double M[100][100]; //Matrix for the rate equations
double P[100]; //population of the levels
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//**********<<< initialization to 0 >>>********** 70
int i,j;
for(i=0;i<N;i++)
{

P[i]=0;
AT[i]=0;
for(j=0;j<N;j++)
{

A[i][j]=0;
D[i][j]=0;
M[i][j]=0; 80

}
}

//**********<<< initialization of E,A,D,sL,sS,sJ,sF,sM >>>**********
double Fg,Fe;
double Mg,Me;
j=0;
for(Fg=fabs(Jgr−I);Fg<=Jgr+I;Fg++)
{

for(Mg=−Fg;Mg<=Fg;Mg++) 90
{

sL[Nex+j]=Lgr;sS[Nex+j]=Sgr;sJ[Nex+j]=Jgr;
sF[Nex+j]=Fg;sM[Nex+j]=Mg;
E[Nex+j]=Ener(fst gr,Lgr,Sgr,Jgr,I,Fg,Mg,Agr,Bgr,field);
j++;

}
}
i=0,j=0;
if(deltaM==2)
{ 100

for(Fe=fabs(Jex−I);Fe<=Jex+I;Fe++)
{

for(Me=−Fe;Me<=Fe;Me++)
{

sL[i]=Lex;sS[i]=Sex;sJ[i]=Jex;sF[i]=Fe;sM[i]=Me;
E[i]=Ener(fst,Lex,Sex,Jex,I,Fe,Me,Aex,Bex,field);
j=0;
for(Fg=fabs(Jgr−I);Fg<=Jgr+I;Fg++)
{

for(Mg=−Fg;Mg<=Fg;Mg++) 110
{

A[i][Nex+j]=(2*Jex+1)*(2*Fe+1)*(2*Fg+1)
*pow(TJ(Fg,−Mg,1,Mg−Me,Fe,Me),2)
*pow(SJ(Jgr,Fg,I,Fe,Jex,1),2)/lifetime;

if(abs(Mg−Me)<=1)//condition 3j
{

D[i][Nex+j]=BxRho(fabs(E[i]−E[Nex+j]),
f+fst,A[i][Nex+j],G,Il);

D[Nex+j][i]=D[i][Nex+j];
} 120
j++;

}
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}
i++;

}
}

}
else
{

for(Fe=fabs(Jex−I);Fe<=Jex+I;Fe++) 130
{

for(Me=−Fe;Me<=Fe;Me++)
{

sL[i]=Lex;sS[i]=Sex;sJ[i]=Jex;sF[i]=Fe;sM[i]=Me;
E[i]=Ener(fst,Lex,Sex,Jex,I,Fe,Me,Aex,Bex,field);
j=0;
for(Fg=fabs(Jgr−I);Fg<=Jgr+I;Fg++)
{

for(Mg=−Fg;Mg<=Fg;Mg++)
{ 140

A[i][Nex+j]=(2*Jex+1)*(2*Fe+1)*(2*Fg+1)
*pow(TJ(Fg,−Mg,1,Mg−Me,Fe,Me),2)
*pow(SJ(Jgr,Fg,I,Fe,Jex,1),2)/lifetime;

if(Mg−Me==deltaM)//polarization
{

D[i][Nex+j]=BxRho(fabs(E[i]−E[Nex+j]),
f+fst,A[i][Nex+j],G,Il);

}
if(Me−Mg==deltaM)//polarization
{ 150

D[Nex+j][i]=BxRho(fabs(E[i]−E[Nex+j]),
f+fst,A[i][Nex+j],G,Il);

}
j++;

}
}
i++;

}
}

} 160

//***<<< initialization of M; dNdt = M . N (dNidt=\sum j(Mij.Nj)) >>>***
double sum;
for(i=0;i<Nex;i++)
{

sum=0;
for(j=0;j<N;j++)
{

M[i][j]=D[j][i];
sum=sum+(A[i][j]+D[i][j]); 170

}
M[i][i]=M[i][i]−sum;

}
for(i=Nex;i<N;i++)
{
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sum=0;
for(j=0;j<N;j++)
{

M[i][j]=A[j][i]+D[j][i];
sum=sum+D[i][j]; 180

}
M[i][i]=M[i][i]−sum;

}

//******<<< calculationg the population of the levels at time t=0 >>>******
for(i=Nex;i<N;i++)

P[i]=1/double(Ngr);

//*******<<< fifth order Runge - Kutta with adaptive step size >>>*******
double tof=1.e−7; //time of flight 190
double t=0; //time
double dt=1.e−10; //size of the first step
double d0=1.e−8; //precision
double d=0; //error
double delta; //temp. variable
double k1[100],k2[100],k3[100],k4[100],k5[100],k6[100];
//********** Cash - Karp parameters **********
double a1=0.,a2=0.2,a3=0.3,a4=0.6,a5=1.0,a6=0.875,

b21=0.2,b31=3./40.,b32=9./40.,b41=0.3,b42=−0.9,b43=1.2,
b51=−11./54.,b52=2.5,b53=−70./27.,b54=35./27., 200
b61=1631./55296.,b62=175./512.,b63=575./13824.,
b64=44275./110592.,b65=253./4096.,c1=37./378.,
c2=0.,c3=250./621.,c4=125./594.,c5=0.,c6=512./1771.,
dc1=c1−2825./27648.,dc2=0.,dc3=c3−18575./48384.,
dc4=c4−13525./55296.,dc5=−277./14336.,dc6=c6−0.25;

while(t<=tof)
{

for(i=0;i<N;i++)
{

k1[i]=0; 210
for(j=0;j<N;j++)

k1[i]=k1[i]+M[i][j]*P[j];
k1[i]=dt*k1[i];

}
for(i=0;i<N;i++)
{

k2[i]=0;
for(j=0;j<N;j++)

k2[i]=k2[i]+M[i][j]*(P[j]+b21*k1[j]);
k2[i]=dt*k2[i]; 220

}
for(i=0;i<N;i++)
{

k3[i]=0;
for(j=0;j<N;j++)

k3[i]=k3[i]+M[i][j]*(P[j]+b31*k1[j]+b32*k2[j]);
k3[i]=dt*k3[i];

}
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for(i=0;i<N;i++)
{ 230

k4[i]=0;
for(j=0;j<N;j++)

k4[i]=k4[i]+M[i][j]*(P[j]+b41*k1[j]+b42*k2[j]+b43*k3[j]);
k4[i]=dt*k4[i];

}
for(i=0;i<N;i++)
{

k5[i]=0;
for(j=0;j<N;j++)

k5[i]=k5[i]+M[i][j] 240
*(P[j]+b51*k1[j]+b52*k2[j]+b53*k3[j]+b54*k4[j]);

k5[i]=dt*k5[i];
}
for(i=0;i<N;i++)
{

k6[i]=0;
for(j=0;j<N;j++)

k6[i]=k6[i]+M[i][j]
*(P[j]+b61*k1[j]+b62*k2[j]+b63*k3[j]+b64*k4[j]+b65*k5[j]);

k6[i]=dt*k6[i]; 250
}
d=0;
for(i=0;i<N;i++)
{

P[i]=P[i]+c1*k1[i]+c2*k2[i]+c3*k3[i]+c4*k4[i]+c5*k5[i]+c6*k6[i];
delta=fabs(dc1*k1[i]+dc2*k2[i]+dc3*k3[i]
+dc4*k4[i]+dc5*k5[i]+dc6*k6[i]);
if(d<delta)

d=delta;
} 260
if(t==tof)

break;
dt=dt*pow(d0/d,0.2);
if(t+dt>tof)

dt=tof−t;
t=t+dt;

}

//**********<<< calculation of the decay rate >>>**********
double rate=0; 270
for(i=0;i<Nex;i++)
{

for(j=Nex;j<N;j++)
AT[i]=AT[i]+A[i][j];

rate=rate+P[i]*AT[i];
}
return rate;

}
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B.2 Pseudo Voigt function
The following code offers the function:

ETCH (x, σ, ΓL) , (B.2)

returning, relatively quickly and very accurately, the values of of the Voigt
function (3.46).

//**********<<< Normalized Gaussian >>>**********
const double pi=3.14159265;
double G(double x,double s){//s=sigma

double S=fabs(s);
return exp(−0.5*pow(x/S,2))/(S*sqrt(2*pi));}

//**********<<< Normalized Lorentzian >>>**********
double L(double x,double GL){//GL=FWHM

double gl=fabs(GL);
return 0.5*gl/(pow(gl/2,2)+pow(x,2))/pi;} 10

//**********<<< Normalized Irrational function >>>**********
double FI(double x,double gI){

double gi=fabs(gI);
return pow(1+pow(x/gi,2),−1.5)/(2*gi);}

//**********<<< Normalized Squared Hyperbolic function >>>**********
double FP(double x,double gP){

double gp=fabs(gP);
return pow(1/cosh(x/gp),2)/(2*gp);} 20

//***********//////////////\\\\\\\\\\\\\***********
//**********((( Extended Pseudo-Voigt )))**********
//***********\\\\\\\\\\\\\\/////////////***********

//**********<<< Extended Pseudo-Voigt function >>>**********
double aX[7]={0.66, 0.15021,−1.24984,4.74052,−9.48291,8.48252,−2.95553};
double bX[7]={−0.42179,−1.25693,10.30003,−23.45651,29.14158,−16.50453,3.19974};
double cX[7]={1.19913,1.43021,−15.36331,47.06071,−73.61822,57.92559,−17.80614};
double dX[7]={1.10186,−0.47745,−0.68688,2.76622,−4.55466,4.05475,−1.26571}; 30
double fX[7]={−0.30165,−1.38927,9.3155,−24.10743,34.96491,−21.18862,3.7029};
double gX[7]={0.25437,−0.14107,3.23653,−11.09215,22.10544,−24.12407,9.76947};
double hX[7]={1.01579,1.50429,−9.21815,23.59717,−39.71134,32.83023,−10.02142};
double ETCH(double x,double s,double GL)
{

double S=fabs(s),gl=fabs(GL);
double GG=2*S*sqrt(2*log(2));
double r=gl/(GG+gl);
double wG=0,wL=0,wI=0,wP=0;
double nL=0,nI=0,nP=0; 40
for(int i=0;i<=6;i++)
{

wG=wG+aX[i]*pow(r,i);
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wL=wL+bX[i]*pow(r,i);
wI=wI+cX[i]*pow(r,i);
wP=wP+dX[i]*pow(r,i);
nL=nL+fX[i]*pow(r,i);
nI=nI+gX[i]*pow(r,i);
nP=nP+hX[i]*pow(r,i);

} 50
wG=(GG+gl)*(1−r*wG);
wL=(GG+gl)*(1−(1−r)*wL);
wI=(GG+gl)*wI;
wP=(GG+gl)*wP;
nL=r*(1+(1−r)*nL);
nI=r*(1−r)*nI;
nP=r*(1−r)*nP;
wG=wG/(2*sqrt(2*log(2)));
wI=wI*0.5/sqrt(pow(2,2/double(3))−1);
wP=wP*0.5/log(sqrt(2)+1); 60
return (1−nL−nI−nP)*G(x,wG)+nL*L(x,wL)+nI*FI(x,wI)+nP*FP(x,wP);}

B.3 Realistic polarization function

The code presented below is principally identical to the code for the transi-
tion rates, given in Appendix B.1, until the point at which the atomic level
populations are calculated. There is a difference in the numerical procedure
for solving the system of differential equations (3.26). For the purpose of in-
creasing the amount of nuclear polarization, the interaction time with the laser
radiation must be considerably longer. This is achieved by inducing optical
pumping in the long section (6) of the apparatus, Fig 3.1. This long inter-
action time demands numerous steps for the solution of (3.26). While the
fifth order Runge-Kutta method with variable step size is the more elegant ap-
proach, it is generally slower, especially for high I and J , than the fourth order
Runge-Kutta method with constant step size, both described in Refs. [49, 50].
The second procedure was applied. The function:

polar (ν − ν0, ν0, Agr, Aex, Bex,

Jex, Lgr, Lex, Sgr, Sex, I, τ, B, Il, ∆M) (B.3)

returns the nuclear polarization (2.60). The parameters are as follows: ν - the
transition frequency (MHz), ν0 - the fine structure splitting (MHz), follow the
hyperfine parameters of the two states in MHz and their quantum numbers, I
- the nuclear spin, τ - the lifetime of the decaying state (s), B - the external
magnetic field (T), Il - the laser intensity (W/m2) and ∆M - the polarization
of the laser (-1, 0, 1). The code deals with excitations from 32S1/2.
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//********************************************************
//* This program is designed for optical pumping from 3^2S 1/2 *
//********************************************************

#include "functions.h"

//**********<<< constants >>>**********
const double C=299792457.4; //Speed of light (m/s)
const double gL=1; //atomic g factor (muB)
const double gS=2.00232; //atomic g factor (muB) 10
const double muB=9.27408e−24; //Bohr magneton (J/T)
const double h=6.62618e−34; //Planck’s constant (J.s)
const double pi=3.14159265;

//**********<<< calculates the energy of a level relative >>>**********
//**********<<< to the FSLevel of the ground state >>>**********
double Ener(double fst,double L,double S,double J,double I,double F,double M,

double A,double B,double field)//MHz(A and B in MHz, field in T)
{

double cA=F*(F+1)−I*(I+1)−J*(J+1); 20
double cB;
if(I!=0.5 && J!=0.5)

cB=(1.5*cA*(cA+1)−2*I*(I+1)*J*(J+1))/(4*I*(2*I−1)*J*(2*J−1));
else

cB=0;
double gJ,gF;//for the Lande formulas
gJ=gL*(J*(J+1)+L*(L+1)−S*(S+1))/(2*J*(J+1))

+gS*(J*(J+1)−L*(L+1)+S*(S+1))/(2*J*(J+1));
if(F!=0)

gF=gJ*(F*(F+1)+J*(J+1)−I*(I+1))/(2*F*(F+1)); 30
//the nuclear term is neglected

else
gF=0;

return fst+A*cA/2+B*cB+gF*muB*field*M*1.e−6/h;
}

//**********<<< D = B x Rho >>>**********
const double factor=C*C/(32*h*pow(pi,3));
double BxRho(double f0,double f,double Aeg,double G,double Il)
//s-1(MHz,MHz,s-1,s-1,W/m2) 40
{

return factor*Aeg*Il*G/(pow(1.e6*(f−f0),2)+pow(G/(4*pi),2))
/(pow(f0*1.e6,2)*f*1.e6);

}

//**********<<< main function >>>**********
double polar(double f,double fst,double Agr,double Aex,double Bex,

double Jex,double Lgr,double Lex,double Sgr, double Sex,
double I,double lifetime,double field,double Il,double deltaM)
//polarisation(5xMHz,6xnumber,s,T,W/m2,number) 50

{
//**********<<< input parameters >>>**********
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const double G=1/lifetime; //FWHM in terms of angular frequency
const double fst gr=0;
const double Jgr=0.5;
const double Bgr=0;
int Ngr=int((2*Jgr+1)*(2*I+1));
int Nex=int((2*Jex+1)*(2*I+1));
int N=Ngr+Nex;
double E[100]; //state energy in MHz 60
double sL[100]; //L
double sS[100]; //S
double sJ[100]; //J
double sF[100]; //F
double sM[100]; //M
double A[100][100]; //spontaneous emission coefficient
double D[100][100]; //D = B x Rho, absorption/stim. emission coefficient
double M[100][100]; //Matrix for the rate equations
double P[100]; //population of the levels

70
//**********<<< initialization to 0 >>>**********
int i,j;
for(i=0;i<N;i++)
{

P[i]=0;
for(j=0;j<N;j++)
{

A[i][j]=0;
D[i][j]=0;
M[i][j]=0; 80

}
}

//**********<<< initialization of E,A,D,sL,sS,sJ,sF,sM >>>**********
double Fg,Fe;
double Mg,Me;
j=0;
for(Fg=fabs(Jgr−I);Fg<=Jgr+I;Fg++)
{

for(Mg=−Fg;Mg<=Fg;Mg++) 90
{

sL[Nex+j]=Lgr;sS[Nex+j]=Sgr;sJ[Nex+j]=Jgr;
sF[Nex+j]=Fg;sM[Nex+j]=Mg;
E[Nex+j]=Ener(fst gr,Lgr,Sgr,Jgr,I,Fg,Mg,Agr,Bgr,field);
j++;

}
}
i=0,j=0;
for(Fe=fabs(Jex−I);Fe<=Jex+I;Fe++)
{ 100

for(Me=−Fe;Me<=Fe;Me++)
{

sL[i]=Lex;sS[i]=Sex;sJ[i]=Jex;sF[i]=Fe;sM[i]=Me;
E[i]=Ener(fst,Lex,Sex,Jex,I,Fe,Me,Aex,Bex,field);
j=0;
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for(Fg=fabs(Jgr−I);Fg<=Jgr+I;Fg++)
{

for(Mg=−Fg;Mg<=Fg;Mg++)
{

A[i][Nex+j]=(2*Jex+1)*(2*Fe+1)*(2*Fg+1) 110
*pow(TJ(Fg,−Mg,1,Mg−Me,Fe,Me),2)
*pow(SJ(Jgr,Fg,I,Fe,Jex,1),2)/lifetime;

if(Mg−Me==deltaM)//cirqular polarization
{

D[i][Nex+j]=BxRho(fabs(E[i]−E[Nex+j]),
f+fst,A[i][Nex+j],G,Il);

}
if(Me−Mg==deltaM)//cirqular polarization
{

D[Nex+j][i]=BxRho(fabs(E[i]−E[Nex+j]), 120
f+fst,A[i][Nex+j],G,Il);

}
j++;

}
}
i++;

}
}

//**********<<< initialization of M; dNdt = M . N >>>********** 130
double sum;
for(i=0;i<Nex;i++)
{

sum=0;
for(j=0;j<N;j++)
{

M[i][j]=D[j][i];
sum=sum+(A[i][j]+D[i][j]);

}
M[i][i]=M[i][i]−sum; 140

}
for(i=Nex;i<N;i++)
{

sum=0;
for(j=0;j<N;j++)
{

M[i][j]=A[j][i]+D[j][i];
sum=sum+D[i][j];

}
M[i][i]=M[i][i]−sum; 150

}

//**********<<< equal population at t=0 >>>**********
for(i=Nex;i<N;i++)

P[i]=1/double(Ngr);

//**********<<< fourth order Runge - Kutta >>>**********
int nSteps=400; //number of steps
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double tof=3.e−6; //time of flight
double dt=tof/nSteps; //step size 160
double k1[100],k2[100],k3[100],k4[100];
int q;
for(q=0;q<nSteps;q++)
{

for(i=0;i<N;i++)
{

k1[i]=0;
for(j=0;j<N;j++)

k1[i]=k1[i]+M[i][j]*P[j];
k1[i]=dt*k1[i]; 170

}
for(i=0;i<N;i++)
{

k2[i]=0;
for(j=0;j<N;j++)

k2[i]=k2[i]+M[i][j]*(P[j]+0.5*k1[j]);
k2[i]=dt*k2[i];

}
for(i=0;i<N;i++)
{ 180

k3[i]=0;
for(j=0;j<N;j++)

k3[i]=k3[i]+M[i][j]*(P[j]+0.5*k2[j]);
k3[i]=dt*k3[i];

}
for(i=0;i<N;i++)
{

k4[i]=0;
for(j=0;j<N;j++)

k4[i]=k4[i]+M[i][j]*(P[j]+k3[j]); 190
k4[i]=dt*k4[i];

}
for(i=0;i<N;i++)

P[i]=P[i]+k1[i]/6+k2[i]/3+k3[i]/3+k4[i]/6;
}

//**********<<< I - J decoupling for J = 1/2 >>>**********
double MJ;
int NI=int(2*I+1);
double MI[100]; //m I 200
if(Agr>=0)
{

for(i=Nex;i<Nex+Ngr/2;i++)
MI[i]=sM[i]+Jgr;

for(i=Nex+Ngr/2;i<N;i++)
MI[i]=sM[i]−Jgr;

}
else
{

for(i=Nex;i<Nex+Ngr/2−1;i++) 210
MI[i]=sM[i]−Jgr;
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for(i=Nex+Ngr/2−1;i<N−1;i++)
MI[i]=sM[i]+Jgr;

MI[N−1]=sM[N−1]−Jgr;
}

//**********<<< calculation the polarization >>>**********
double polar=0;
for(i=Nex;i<N;i++)

polar=polar+MI[i]*P[i]; 220
polar=polar/I;
return polar;

}
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Unambiguous values of the spin and magnetic moment of 31Mg are
obtained by combining the results of a hyperfine structure measure-
ment and a β-NMR measurement, both performed with an opti-
cally polarized ion beam. With a measured nuclear g factor and
spin I = 1/2, the magnetic moment µ(31Mg) = −0.88355(15) µN

is deduced. A revised level scheme of 31Mg (Z = 12, N = 19)
with ground state spin/parity Iπ = 1/2+ is presented, revealing the
coexistence of 1p-1h and 2p-2h intruder states below 500 keV. Ad-
vanced shell-model calculations and the Nilsson model suggest that
the Iπ = 1/2+ ground state is a strongly prolate deformed intruder
state. This result plays a key role for the understanding of nuclear
structure changes due to the disappearance of the N = 20 shell gap
in neutron-rich nuclei.
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Since Mayer and Jensen established the concept of shell structure in atomic
nuclei, magic nucleon numbers have played a decisive role in describing the nu-
clear system [1]. About a quarter century later, the discovery of the anomalous
ground state properties of 31Na [2, 3] suggested that the magic shell structure
can be broken. Shell-model calculations allowing particle-hole (p-h) excitations
across the N = 20 shell gap proposed that a group of nuclei with deformed
ground states appears between Z = 10 − 12 and N = 20 − 22. Because the
p-h excited intruder states come lower in energy than the normal shell-model
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states, this region has been called the “island of inversion” [4]. In fact, β-decay
experiments [5, 6], intermediate energy Coulomb excitation [7], and in-beam
γ-ray spectroscopy [8] confirmed the deformation of the even-even nuclei 30Ne,
32Mg and 34Mg. Moment measurements revealed that also the ground state
of the N = 19 nucleus 30Na has an anomalous deformation [9] linked to this
normal-intruder inversion [10]. The following questions thus arise: Where is
the boundary between the normal sd-shell nuclei and nuclei having an intruder
ground state, and does it clearly exist at all? This general intriguing question,
about how widely nuclei with intruder ground states are spread and in what
manner they become normal has not been answered, either experimentally or
theoretically.

It has been suggested that the N = 20 shell gap is changing from one nu-
cleus to another [11, 12] due to changes in the proton-neutron interaction. The
boundary of the island of inversion can thus be shifted or smeared out, and in-
truder ground states might appear outside the earlier defined boundaries. Since
the size of the shell gap is related to the single-particle energies [determined
mainly by the monopole part of the nucleon-nucleon (NN) interaction], the
mapping of the boundary is linked to one of the most basic and unanswered
questions in present day nuclear structure physics: the microscopic mechanism
to determine the monopole part of the NN interaction.

We present in this Letter a measurement of the ground state spin and mag-
netic moment of the exotic even-odd nucleus 31Mg (Z = 12, N = 19). The
earlier observed anomalous lifetime and the branching intensities in its β decay
have never been explained [5, 13], although the high level density suggested the
presence of intruder states at low excitation energy [14]. However, unambigu-
ous spin/parity assignments are needed in order to establish the coexistence of
normal sd-shell states with 1p-1h and 2p-2h intruder states. In addition to the
ground state spin and parity, the magnetic moment value and sign provides
direct information on the odd-neutron configuration.

The spin and magnetic moment of 31Mg are measured by combining the
results from two experimental techniques, based on the atomic hyperfine struc-
ture and on the nuclear interaction with external magnetic fields. Both meth-
ods rely on an optically polarized beam of 31Mg+ ions which are implanted
into a crystal, where the angular asymmetry in the β decay is detected. The
experiments were performed at ISOLDE-CERN at the on-line collinear laser
spectroscopy setup [15–17]. The 31Mg beam was produced by bombarding a
thick UC2 target with 1.4 GeV protons (1.2 × 1013/s on average) from the
CERN PS-Booster. 31Mg was selectively laser ionized with the resonance ion-
ization laser ion source [18]. The ions were accelerated to 60 keV, and a mass
separated 31Mg+ beam with a typical intensity of 1.5×105 ions/s (and less than
5% contamination from surface-ionized 31Na) was guided to the collinear laser
spectroscopy setup. The β-decay half-life was measured to be in agreement
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with the earlier published value of 250(30) ms [5].
The Mg+ ions are polarized through optical Zeeman pumping with a cir-

cularly polarized laser beam propagating along the ion beam. The polariza-
tion axis parallel to the laser beam is maintained by a weak magnetic guiding
field over the interaction zone. Via the hyperfine interaction and adiabatic
decoupling of the electron and nuclear spins, the resonantly induced electron
polarization is partly transferred to the nucleus. The laser wavelength was set
to the Doppler-shifted resonance value for the D2 line (3s2S1/2 ↔ 3p2P3/2;
35760.88 cm−1). About 15 mW of UV power (λ ≈ 280 nm) was obtained
from an external-cavity frequency doubling ring, coupled to the output of a
cw dye laser (Pyrromethene 556) which was pumped by an Ar+ laser. By
varying the velocity of the ions, applying a tunable high voltage to the in-
teraction zone, the hyperfine structure was scanned. The optically induced
resonances are observed through the asymmetry in the β decay of the polar-
ized 31Mg nuclei, after implantation into a MgO single crystal placed in a
transverse magnetic field B. The coincidence counts from two β telescopes
(each consisting each of two thin plastic scintillators), placed at 0◦ and 180◦

with respect to the magnetic field, allowed the normalized β-decay asymmetry
[N(0◦)−N(180◦)]/[N(0◦) + N(180◦)] to be deduced.

In Figs. 1(a) and 1(b) the β-decay asymmetry is shown as a function of the
scanned acceleration voltage, for left-handed (σ−) and right-handed (σ+) po-
larized laser light. Apart from the sign changes in the resonance amplitudes,
which depend on details of the optical pumping and decoupling process as ex-
plained in [9], the line positions are easily understood as arising from the differ-
ent hyperfine structure components F of the atomic ground and excited states
[Fig. 1(c)]. For example, the splitting between the J = 1/2 ground state levels
equals ∆ν(x) = A(x)[I(x)+1/2] and depends on the nuclear spin I. The hyper-
fine constant A(x) depends on the nuclear g factor and the isotope independent
magnetic hyperfine field He [15], A(x) = g(x) µN He/J . To simulate the line
positions, the hyperfine fields induced by the 2S1/2 and 2P3/2 electron states
need to be known. These have been deduced from hyperfine-structure data on
the stable isotope 25Mg, reported from an optical pumping laser-rf double res-
onance experiment in a Penning trap [19]. The essential number is the 3s2S1/2

magnetic hyperfine structure constant Ag.s.(25Mg) = −596.254376(54) MHz.
Knowing the spin I = 5/2 and magnetic moment µ = −0.85545(8)µN of 25Mg
[20], the hyperfine constant for 31Mg can be deduced with the nuclear g factor
as a parameter. Assuming the measured g factor (as described below) with a
negative or a positive sign, this results in Ag.s.(31Mg) = ±3079.4(8) MHz. For
a nuclear spin I = 1/2 this gives the line positions as shown in Figs. 1(d) and
1(e). The good agreement of Fig. 1(d) with the observed line splitting clearly
decides for the ground state spin I = 1/2 and a negative g factor. Any other
spin assumption would involve a much larger splitting, as shown in Fig. 1(f)
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FIG. 1: (a), (b) Hyperfine spectra of σ+/σ− optically polarized 31Mg+ ions, observed
via the asymmetry in the nuclear β decay after implantation into MgO. (c) Hyperfine
structure in the transition 3s2S1/2 → 3p2P3/2 (D2 line) assuming a nuclear spin
I = 1/2. (d) - (f) Simulated spectra assuming I = 1/2 or I = 3/2, using the absolute
g factor measured by NMR. The allowed transitions are labelled by the total angular
momenta F of the ground- and excited-state hyperfine levels.

for the example of I = 3/2. The spin I = 1/2 is also manifest in the feature
that only three resonances are detected in the hyperfine-structure scans. Now
the adopted nuclear g factor remains to be confirmed by a nuclear magnetic
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FIG. 2: Typical β NMR for 31Mg implanted in MgO.

resonance (NMR) measurement.
Maximum polarization of the 31Mg beam is obtained for σ+ light?, with

the Doppler-tuning voltage fixed to the resonance value of the (12) transi-
tion defined in Fig. 1(d). This is used for a NMR measurement on 31Mg
implanted into MgO. Resonant destruction of the nuclear polarization is in-
duced by a rf magnetic field at the Larmor frequency νL = g µN B/h. The
resonance is recorded by measuring the β asymmetry as a function of the ap-
plied rf frequency, as shown in Fig. 2. In total, ten measurements have been
performed for different rf powers, and a statistical average over the resonance
positions was taken to obtain the Larmor frequency νL(31Mg) = 3859.73(18)
kHz. To calibrate the magnetic field, we measured the NMR spectrum for a
polarized 8Li beam implanted in the same MgO crystal: νL(8Li) = 1807.03(2)
kHz. From both Larmor frequencies, and using g(8Li) = 0.826780(9) [20],
the absolute value of the 31Mg g factor is deduced. This value needs to be
corrected for diamagnetic shielding, using the numbers from Raghavan’s ta-
ble [20], resulting in |g(31Mg)| = 1.7671(3). The error accounts for a pos-
sible 5 ×10−5 magnetic field drift over the 48 h period between the mea-
surements and a similar uncertainty due to a possible difference in the beam
positions on the crystal. This value, with a negative sign, gives the hyperfine-
structure simulation of Fig. 1(d), confirming not only that the ground state
spin of 31Mg is I = 1/2 but also that the magnetic moment is negative,
namely, µ(31Mg) = −0.88355(15)µN . The sign and magnetic moment value
confirm the positive parity assigned to this I = 1/2 level (see further).

? There is a confusion in the original text between σ±. A correction must be considered
in Fig. 1, where (a) corresponds to σ− and (b) to σ+.
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Experiment
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FIG. 3: Partial experimental level scheme of 31Mg, with new spin/parity assignments,
compared to various shell-model calculations (see text for details). The magnetic
moments of theoretical levels are mentioned on the right (units µN ).

Earlier β-decay experiments already assigned a positive parity to the ground
state and most of the low-lying states, based on the fact that they are fed
via the β decay from the positive parity 31Na ground state [14]. One level at
461 keV was observed only via the β-delayed neutron decay of 32Na (N = 21)
and therefore assigned a negative parity. No firm spin assignments could be
made. Now, with our ground state spin/parity Iπ(31Mg)=1/2+, we can make
tentative spin/parity assignments to the first excited states of 31Mg (Fig. 3)
using the multipolarity assignments made by Klotz et al. [14]. The negative
parity level at 461 keV is most likely the Iπ=7/2− (1p-1h) intruder state,
confirmed recently from a lifetime measurement on the 240 keV γ decay [21].
Further, the earlier observed hindered β decay to the ground state of 31Al [14],
known to have Iπ=5/2+ [22], can also be understood. A new measurement of
the 31Mg β decay has revealed an even weaker ground state feeding [23], as
expected for a second forbidden 1/2+ to 5/2+ transition.

The level scheme is compared to recent shell-model calculations in Fig. 3.
First we compare to a calculation performed with the USD interaction, where
protons and neutrons are in the positive parity sd shell only [13]. The lowest
1/2+ state is in this case predicted around 2.5 MeV above the normal 3/2+

ground state (labeled 0p-0h in Fig. 3). The complete disagreement with the
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observed high level density below 500 keV, including both positive and negative
parity states, suggests the need to include neutron excitations into the negative
parity pf shell [14]. Such calculations in the sd − pf model space have been
performed using two approaches.

With the ANTOINE shell-model code [12], using the interaction described
in [24], calculations are performed in the full sd−pf space. Intruder states are
calculated by blocking, respectively, one or two neutrons in the pf shell (1p-
1h, 2p-2h in Fig. 3), resulting in low-lying positive and negative parity states
below 1 MeV. While the 1p-1h intruder states are predicted to occur well below
the 2p-2h states (contrary to the experimental situation), these calculations do
predict the correct ordering within each doublet (1/2+ below 3/2+, and 3/2−

below 7/2−). The calculated magnetic moment (using free-nucleon g factors)
of the pure 2p-2h 1/2+ intruder state is in good agreement with the observed
value (µ = −0.84 µN compared to µexp = −0.88355 µN ), suggesting that the
wave function of the observed ground state is close to a pure 2p-2h intruder.
The lowest 1/2− state lies around 1.5 MeV and has a positive magnetic moment
µ = +1.54 µN .

Another set of calculations, including mixing between normal and intruder
np-nh configurations have been performed with the Monte Carlo shell model
(MCSM) [25] in the sd−p3/2f7/2 space (“mixed np-nh” in Fig. 3). The interac-
tion for this model space is described in [26] and was used to describe a variety
of nuclei, many of which have intruder dominant low-lying states [10, 26, 27].
While these mixed calculations reproduce better the high level density below
500 keV, they also cannot reproduce the correct ordering of the intruder le-
vels. The magnetic moment for the 1/2+ level (µ = −0.66 µN ), dominated by
more than 90% of 2p-2h intruder configurations, shows a less good agreement
with experiment than for the pure 2p-2h state calculated with the interaction
from [24]. This shows the sensitivity of the magnetic moment to small changes
in the configuration, due to differences in the model space and single-particle
energies.

The fact that the pure intruder calculations with the interaction from Ref.
[24] predict the correct ordering within each doublet and reproduce better the
magnetic moment than the calculations with the interaction from [26] may
guide us to improve the interactions, particularly in their monopole and/or
spin-isospin parts. The spacing between the 1p-1h and 2p-2h states is closely
related to the N = 20 sd− pf shell gap. The reduction of this gap from 40Ca
down to 32Mg is different for the sd−pf interaction (from 7.5 to 5.3 MeV) and
the sd − p3/2f7/2 interaction (from 6 to 4 MeV). The better agreement of the
MCSM calculations with the high experimental level density is an indication
that indeed the shell gap is strongly reduced in the Mg isotopes. Such a reduced
gap creates extensive particle-hole excitations from the sd-shell to the pf -shell,
making 31Mg rather soft against deformation and inducing a near degeneracy
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of 1p-1h and 2p-2h states. In fact, in a Nilsson model picture, the [200] 1/2+

Nilsson orbit is occupied by the last neutron of 31Mg for a large prolate defor-
mation (β ∼ +0.4). Thus, the present firm spin value suggests a strong prolate
deformation of the 31Mg ground state. This is confirmed by the shell-model
calculations, where the quadrupole moment of the mixed np-nh and the pure
2p-2h states are calculated to be respectively Q(3/2+)= -13.6 and -14.6 e fm2

and with transition moments B(E2; 3/2+ → 1/2+) = 85 and 87 e2 fm4. These
E2 quantities are consistent with a prolate deformed K = 1/2 band having an
intrinsic quadrupole moment Q0 ∼ 65 fm2 and deformation β ∼ +0.44.

In conclusion, we determined the spin/parity of the 31Mg ground state as
Iπ=1/2+ and present an updated level scheme with tentative spin/parity as-
signments to the lowest excited states. Calculations using the most recent
shell-model interactions for the sd− pf shell cannot reproduce the experimen-
tally observed level ordering, but they predict the observed coexistence of 1p-1h
and 2p-2h intruder configurations at low excitation energy. A comparison of
the experimental magnetic moment with the calculations for pure intruder and
mixed wave functions suggests that the observed 1/2+ ground state is a nearly
pure 2p-2h intruder state, which in a Nilsson model approach is related to the
strongly deformed [200] 1/2+ level.

The spin/parity assignments made in this work, together with the static
moments of this and other odd-A nuclei, are thus providing a key element for
further investigating the shell gap evolution in this region of the nuclear chart.
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(13002001) and for Young Scientists (14740176) from the MEXT of Japan.
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33Mg: determination of a negative parity intruder ground
state via nuclear moments
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We report on the first unambiguous determination of the nuclear
ground-state spin of 33Mg, I = 3/2, achieved by combining laser
spectroscopy with nuclear magnetic resonance techniques. The mea-
sured negative magnetic moment µ = −0.7456(5) µN points to a
2p-2h intruder ground state and a negative parity. Discrepancies in
the interpretation of former experimental studies are discussed and
based on the firm spin-parity assignment from this work a corrected
set of spins and parities is proposed for the known excited states.
An interpretation is given within the deformed shell model and the
particle plus rotor model. The results are consistent with an odd-
neutron occupation of the 3/2 [321] Nilsson orbital at a large prolate
deformation.

PACS numbers: 21.10.Hw, 21.10.Ky, 21.60.Cs, 27.30.+t, 32.10.Dk, 32.10.Fn

Since introduced in nuclear physics, the concept of shell structure and magic
numbers has governed our understanding of nuclear matter in atomic nuclei
close to stability. With obtaining an access to more exotic species we could
follow the nuclear structure evolution towards extreme isospin values, in par-
ticular with increasing the neutron excess in light systems. The onset of de-
formation in nuclei with a closed neutron sd-shell was discovered via the extra
binding energy and anomalous spin of 31Na [1, 2], and the low-lying first 2+

1

state in 32Mg [3, 4]. Nuclear-reaction experiments directly determined large
prolate deformations in the three N = 20 isotones 30Ne [5], 31Na [6] and 32Mg
[7–9]. The observed phenomena are understood as an inversion of the nor-
mal spherical ground-state configurations, expected for these nuclei according
to the traditional shell model, with deformed, “intruder”, states governed by
particle-hole excitations over the N = 20 shell gap. Including Ne, Na and



2

Mg isotopes, the “Island of inversion” initiates with 28Ne [8, 10], 29Na [11–13]
and exhibits a sharp boundary between 30,31Mg [14, 15]. Being inside the is-
land, where different particle-hole excitations coexist at low energies, the 33Mg
ground state needs to be probed experimentally. A β-decay study [16] suggests
a 1p-1h ground-state configuration with spin and parity Iπ = 3/2+ in contrast
to Iπ = 5/2+ from intermediate energy Coulomb excitation [17] and proton in-
elastic scattering [18] experiments. The systematics of nuclear moments in the
region [19] and studies of the neighboring even-even Mg isotopes [7, 8, 20, 21]
point to a 2p-2h ground state. This fact and the discrepancy in the spin as-
signment served as a motivation to measure the spin and magnetic moment of
33Mg and thus unambiguously determine its ground-state configuration. This
is of high importance for the theoretical modeling of the region, since the strong
competition between 1p-1h and 2p-2h configurations is directly related to the
size of the N = 20 shell gap.

The neutron rich 31,33Mg were produced in a fragmentation reaction at
ISOLDE - CERN [22] by 1.4 GeV protons from the Proton Synchrotron Booster
impinging on a thick UCx/graphite target. Their lifetimes [23, 24] enabled the
use of the shortest cycle of 2 × 1013 protons every 1.2 s. When the primary
beam was shared with other experiments the highest pulse intensity of 3×1013

protons every 2.4 s was used. Laser ionization was applied to chemically select
Mg [25] with an average yield of 2.5× 103 ions/µC for 33Mg. The radioactive
beams were accelerated to 40 or 50 keV, mass analyzed and delivered to the
Collinear Laser Spectroscopy Setup (COLLAPS) [11, 26, 27].

The probe’s Hyperfine Structure (HFS) and nuclear gyromagnetic ratio are
measured by employing Laser Spectroscopy and Nuclear Magnetic Resonance
(NMR). The singly ionized Mg (Mg ii) resonantly interacts with a circularly po-
larized UV laser radiation. Optical pumping takes place, polarizing the atomic
spins in the direction of the photons momentum, parallel to an applied weak
magnetic field of ≈ 0.6 mT. A strong magnetic field of ≈ 0.3 T, perpendicular
to the propagation axis, is causing a decoupling of the electronic and nuclear
angular momenta and resulting in a nuclear polarization. After implantation
in a cubic crystal, the β-decay anisotropy is monitored with two telescopes of
thin scintillators, placed at 0◦ and 180◦ with respect to the orientation axis.
The experimental β asymmetry

[
N (0◦)−N (180◦)

]
/
[
N (0◦)+N (180◦)

]
, con-

structed from the coincidence events, is measured as a function of the laser
frequency in the reference frame of the atomic beam or as a function of an
external Radio Frequency (RF) field.

The Doppler shifted laser frequency is scanned in the D2 line (279.635 nm for
Mg [28]), inducing transitions between the 32S1/2 and 32P3/2 hyperfine mul-
tiplets, as shown in Figs. 1 (a) and (e). The experimental spectra of 33Mg ii,
obtained with σ− and σ+ laser polarization are displayed in Fig. 1 (b) and (c),
respectively. The frequency scale is given relative to the fine-structure splitting
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FIG. 1: (a) Principle hyperfine structure in the D2 line for I = 3/2 and A < 0; (b),
(c) Realistic fits of the β-asymmetry spectra of σ− and σ+ polarized 33Mg ii in the D2

line, after implantation into MgO; (d) β-asymmetry spectrum of σ− polarized 31Mg ii
(I = 1/2, A < 0) in the D2 line, implanted into MgO; (e) HFS scheme corresponding
to (d). The transition F : 0→ 1 falls outside the frequency range of the figure;

of the reference 31Mg ii (I = 1/2 [15]). The distance between the two groups
of resonances in 33Mg ii is determined by the splitting ∆E in the 32S1/2 multi-
plet. This direct observable is related to the nuclear spin I and magnetic dipole
hyperfine parameter A with the equation: ∆E = |A| (I + 1/2). The ratio A/g,
where g is the nuclear g factor, is constant for an isotopic chain and has a
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FIG. 2: NMR spectrum of 33Mg implanted into MgO, representing 34 % of the total
statistics.

positive sign for alkali-like atoms [29]. The precise A/g value is established for
Mg ii by the experimental work on the stable 25Mg ii [30, 31]. Thus a g-factor
measurement in 33Mg leads to the determination of A, which in combination
with the HFS splitting yields the nuclear ground-state spin. Magnetic reso-
nance measurements were carried out with σ− polarized light in the higher
frequency triplet of transitions [Fig. 1 (b)] after implantation into the cubic
crystal lattices of MgO (fcc) and Pt (ccp). The produced experimental asym-
metry was ≈ 2 %. A radio frequent magnetic field of a few tenths of a mT was
applied perpendicularly to the static magnetic field B. In the vicinity of the
Larmor frequency νL = g B µN/h the experimental asymmetry is reduced by
the resonant absorption of photons from the RF field. An example NMR spec-
trum of 33Mg in MgO, obtained with a small sinusoidal frequency modulation
with an amplitude of 1 kHz, is presented in Fig. 2. The total statistics includes
spectra of similar quality in Pt. The reference probe 31Mg was implanted in
both hosts in order to extract the ratio of the Larmor frequencies, which is in-
dependent of the chemical and Knight shifts. The nuclear gyromagnetic ratio
of 33Mg, found in such manner, is

∣∣g (
33Mg

)∣∣ = 0.4971(4). The error includes a
systematic uncertainty due to a possible drift of the static magnetic field. This
specific value of the g factor, together with the measured HFS splitting ∆E,
fix the 33Mg ground-state spin to I = 3/2.

The isotope shift between 31,33Mg ii, using the total mass shift from Ref. [32],
was calculated to be δν33,31 = 1867 MHz. The uncertainty on this number,
including the errors on the mass shift and an unknown change between the
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mean-square charge radii, is estimated to be smaller than 50 MHz. Based on
the isotope shift one can plot the fine-structure splitting of 33Mg ii relative
to the transitions of the hyperfine structure, the so-called “center of gravity”.
The latter is represented by the alternating dash-dot line ν33 in Fig. 1. The
transitions starting from the higher angular momentum state F = I + 1/2
(F = 2 for I = 3/2) are always closer to the center of gravity. In the case
of 33Mg ii their resonances appear at the higher frequency side of the spectra
meaning that they start from the lower energy level. Since the levels in 32S1/2

are inverted the magnetic dipole hyperfine parameter has a negative sign. This
conclusion is independently confirmed by the theoretical polarization function
[11, 33], represented by the fitted curves in Figs. 1 (b) and (c). Since the ratio
A/g is positive, the ground-state g factor of 33Mg is negative, resulting in a
negative nuclear magnetic moment µ(33Mg) = g I µN = −0.7456(5)µN .

The ground-state configuration of 33
12Mg21 suggested in Ref. [16] is character-

ized by spin and parity Iπ = 3/2+, associated with 1p-1h excitation over the
N = 20 shell gap. In the extreme shell-model picture, the properties of such
a state are determined by an odd neutron in the ν 1d3/2 orbital, which has a
positive single-particle magnetic moment. In order to explain the experimental
negative sign of the magnetic moment, an odd number of neutrons must occupy
the pf -shell, as these have negative Schmidt values for the orbitals ν 1f7/2 and
ν 2p3/2. In this simplified manner one already arrives with the conclusion that
the ground-state parity of 33Mg is negative, determined by the negative parity
of the latter two orbitals.

Large-scale shell-model calculations are carried out in the sd−pf model space
with the code Oxbash [36], using the Hamiltonians from Refs. [34, 35], designed
specifically for the island of inversion. Mixing of states with a different number
of particle-hole excitations (h̄ω) is not considered. The neutron configuration
space is reduced to ν (sd−1f7/2−2p3/2), as it is commonly undertaken in this

TABLE I: Gyromagnetic ratios and quadrupole moments of different particle-hole
excitations in 33Mg (I = 3/2), calculated with the interactions WBMB [34] and
SD−PF [35]. Free-nucleon g factors are used and effective charges eπ = 1.5 e and
eν = 0.5 e.

WBMB SD−PF

n h̄ω Iπ gfree Q (mb) gfree Q (mb)

0 3/2− −1.47 −83 −1.35 −91

1 3/2+ 0.75 135 0.78 140

2 3/2− −0.45a 147b −0.47a 157b

aExperimental gyromagnetic ratio from this work g = −0.4971(4).
bQ(βC) = 151(38) mb, calculated from βC [17].
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FIG. 3: Nilsson diagram in the ν (sd−1f7/2−2p3/2) configuration space. (a), (b)

Odd neutron occupation in the ground state of 33Mg and 31Mg, respectively.

region [12, 15, 20, 34, 35]. Two out of four valence protons are fixed on the
π 1d5/2 orbital. The other two are confined within the sd-shell. Calculated
nuclear moments of different particle-hole excitations (0, 1 and 2 h̄ω) with spin
3/2 are presented in Tab. I. Clearly, the experimental g factor is only consistent
with the 2p-2h configuration. Furthermore, the good agreement between the
theoretical and experimental values indicates that the ground state of 33Mg is
a nearly pure 2p-2h intruder.

The charge distribution deformation of 33Mg has been determined via
Coulomb excitation to be βC = 0.52(12) [17]. This number only slightly de-
pends on the assumed initial and final spin values (5/2+ → 7/2+) in that
study. An axially symmetric rotor with a ground-state spin I = K = 3/2
has a spectroscopic quadrupole moment directly related to the deformation
parameter, as described in Ref. [37]. The obtained model-dependent value
Q = 151(38) mb is in good agreement with the theoretical number for the 2 h̄ω
state in Tab. I. In a Nilsson model picture the Fermi level for N = 21 coincides
with an orbital having spin and parity Iπ = 3/2− for a deformation in the
interval 0.33 <∼ β2

<∼ 0.52. This is represented in Fig. 3 by the dashed section
(a) of the 3/2 [321] orbital. The established range is in good agreement with
the matter deformation βM = 0.47(8) from a proton inelastic scattering study
[18]. The neighboring even-even 32,34Mg exhibit similar charge deformations,
in accordance with Refs. [7–9] and [21], respectively. Analogous deformation
parameters are determined for 31Mg [15], as shown in Fig. 3 (b), 31Na [6] and
30Ne [5]. Altogether, the result of this work appears to be consistent with the
systematics in the island of inversion.
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and Kπ = 1/2+ (see the text).

In an attempt to compile the current experimental facts in a coherent in-
terpretation, we adopt the energy levels at 484, 705 and 1243 keV, identified
in the β decay of 33Na [4, 16], and propose a different set of spin-parity as-
signments. In the latter work [16] a suggestion is made that since the most
intense γ in 33Mg of 546 keV is not found in coincidence with any of the other
transitions it must connect the 705 keV level with an isomeric state at 159 keV.
The decay of this state has not been observed within their coincidence window
of 500 ns, thus setting a lower limit for the lifetime of the isomer and conse-
quently demanding a spin of at least two units greater than the spin of the
ground state. Reaction experiments [17, 18] consistently provide evidence that
the parity of the 484 keV level is identical to the parity of the ground state,
contrary to Ref. [16]. This level is suggested in Ref. [17] to be a rotational
excitation, which according to our firm spin-parity assignment to the ground
state results in spin and parity 5/2− of the first excited state. The transition
from the 484 keV level to the isomer, which has the same multipolarity as the
transition to the ground state, has not been experimentally observed. Based
on this fact we consider the hypothesis of having an isomer very unlikely and
postulate a level at 546 keV. The modified level scheme is presented in Fig. 4.
We reject the claim of a large β branch to the ground state, which we regard
as the source of inconsistencies between Ref. [16] on one side and the present
work, as well as Refs. [17, 18], on the other. Here the ground-state parity
of 33Na is considered positive, based on analogy with 31Na (Iπ = 3/2+ [2])
and shell-model calculations predicting either 0 h̄ω or 2 h̄ω configurations. The
most likely interpretation of the available experimental evidence is that the
observed excited states in 33Mg originate from two rotational bands - one with
Kπ = 3/2− based on the 3/2 [321] Nilsson orbital and another with Kπ = 1/2+

based on the 1/2 [200] orbital, both at a large prolate deformation. This inter-
pretation is consistent with the spin-parity change between 31Mg (Iπ = 1/2+)
and 33Mg (Iπ = 3/2−). The dashed lines in Fig. 4, both being close to the
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experimental level at 1243 keV, represent the calculated third members in each
of the bands. The log ft value associated with this state is relatively low [16],
suggesting that it belongs to the positive parity band.

In summary, the nuclear ground-state spin and magnetic moment of 33Mg
have been experimentally determined to be I = 3/2 and µ = −0.7456(5)µN .
This is the first magnetic-moment measurement for a nucleus with 21 neutrons
in the island of inversion. Shell-model calculations reveal the 2p-2h nature
of the ground state and associate it with a negative parity. The result is
consistent with a large prolate deformation, based on the 3/2 [321] Nilsson
orbital. A corrected level scheme with tentative spin-parity assignments is
proposed, combining our firm spin-parity assignment to the ground state with
the available evidence from other experimental studies.
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ABSTRACT 

 
The results from a recent measurement of the ground-state spin and magnetic 
moment of 31Mg are presented. The g-factor value is obtained via nuclear magnetic 
resonance to be |g(31Mg)| = 1.7671(3). Comparison between the hyperfine splitting 
in 32S1/2 of 31,25Mg1+ unambiguously determines the ground-state spin I(31Mg) = 
1/2 and fixes negative sign to the magnetic moment, which combined with the 
precise value of the g factor, yields μ(31Mg) = −0.88355(15) μN. Spins and parities 
are assigned to the first four levels according to former β-decay studies and 
comparison with advanced shell-model calculations. Based on the calculations and 
the Nilsson model a significant prolate deformation is deduced for the ground state 
of 31Mg. 
 
Keywords: 31Mg, NMR, Spin, Magnetic moment 

 
 Introduction 
 
This study is instigated by the interesting phenomenon taking place for neutron rich 
Na and Mg isotopes around N = 20. There are experimental evidences for 
deformation and breaking of the shell structure in the region, although these nuclei 
have a number of neutrons close to a magic number. First, online mass spectrometry 
suggested the onset of deformation in 31,32Na [1]. Later on, β-decay studies of 
neutron rich Na isotopes suggested the deformation of 32Mg [2,3]. A direct 
quadrupole moment measurement indeed confirmed the deformation of 30Na [4]. It 
is presently established that 30Ne and 34Mg are also deformed. The deformation has 
been attributed to the fact that the ground states of these nuclei are “intruder states” - 
with wave functions dominated by particle-hole excitations over the shell gap. With 
reducing the N = 20 shell gap, these states could decrease in energy and even 
become the ground state. The earliest shell-model calculations, taking into account 
(p-h) excitations from the sd to the pf shell, predicted the deformation region to be 
within the limits (10 ≤ Z ≤ 12 & 20 ≤ N ≤ 22), while more recent calculations 
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enclose different boundaries depending on the used parametrization of the 
interaction. Since these are exotic nuclei, which became available for research the 
last years, the borderlines of the so-called “Island of Inversion” are not 
experimentally revealed - 31Mg in particular. The measured spin and magnetic 
moment of this nucleus give a valuable contribution to the understanding of the 
nuclear structure in the region. 
 
 Experimental technique 
 
The ions of the neutron rich 31Mg are produced at ISOLDE-CERN [5] in nuclear 
reactions induced by high energy protons (1.4 GeV) impinging on a UC2 target. The 
“chemical” selectivity of the laser ion source RILIS, is used to ionize the Mg atoms 
[6], making possible their extraction from the ion source with an electrostatic 
potential of 60 keV. The Mg isotopes are mass separated with the general purpose 
separator (GPS) and delivered to the collinear laser spectroscopy setup COLLAPS 
[7] (Fig. 1.). 

 

 
 

B ┴
→

B װ
→

2 
1 

3 

4 6

7

9 

5

8 

Fig. 1. Collaps; 1.)Incoming 1+ ions; 2.)Ion-beam deflection; 3.)UV-laser beam; 
4.)Post-acceleration lenses; 5.)Optical detection; 6.)Coils-weak magnetic field; 
7.)Magnet-strong field; 8.)β detectors; 9.)RF Coil; 

 
After a deflection of 10° the ion beam coincides with a UV-laser beam close in 
frequency to the atomic transitions between the 32S1/2 and either 32P1/2 or 32P3/2 
hyperfine multiplets (D1 and D2 lines respectively). By applying an additional 
acceleration, the Doppler shifted frequency (1.1) sensed by the ions is scanned 
through all the transitions of the hyperfine structure in the investigated line. 
                                               

0 (1 v ) /(1 v )c cν ν= − +                                          (1.1) 
The exotic 31Mg is studied via its β decay. A section with a weak magnetic field 
causes the Zeeman splitting of the F quantum states (F = I + J), which ensures the 
optical pumping between the mF states. The produced atomic polarization is 
maintained during the adiabatic transition from the weak longitudinal to the strong 
transverse magnetic field, provided that the nuclear and electronic spins do not 
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decouple. The nuclear spin orientation is maintained after implantation in a suitable 
crystal (MgO with a cubic lattice structure) due to the strong field. The asymmetry 
in the β-scintillation detectors (1.2) reflects the nuclear polarization (1.4) according 
to the angular distribution of the β radiation of a polarized ensemble (1.3). 
                             ( ) ( ) ( ) ( )0 0 00 180 0 1800N N N⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦a N                             (1.2) 

                                          ( ) ( ) ( )1 v cosW c AP θ= +                                           (1.3) θ
                                               ( )

I

I I
m

m m I=P p∑                                                   (1.4) 

Applying a radiofrequency field, corresponding to the equidistant energy splitting of 
the nuclear Zeeman levels (1.5), changes their population, which destroys the 
polarization and with that the observed asymmetry. 
                                                

L I NE h g Bν μΔ = =                                                   (1.5) 
 
 Results 
 
Multiple observations of the low-lying hyperfine structure of 31Mg1+ are done with 
left and right circularly polarized laser light. In the example spectra shown in Fig. 2 
a) and b) one can clearly identify three transitions of the D2 line (32S1/2→32P3/2). 
According to the selection rule ΔF = 0, ±1, such a number of resonances occurs only 
for spin 1/2. This is not considered as a proof, since at certain conditions, no 
polarization is created for some of the transitions. In the D1 line for instance F: 1→1 
was observed with only one polarization of the laser light. Following the first 
evidence on the spin, we performed a NMR measurement in the region predicted by 
shell-model calculations for 1/2+ intruder ground state (Fig. 2. f). The measured 
resonance frequency is νL(31Mg) = 3859.73(18) kHz. In order to have a magnetic 
field calibration of at least the same precision, 8Li is implanted in the same crystal 
(MgO) and investigated with NMR 48 hours later: νL(8Li) = 1807.03(2) kHz (Fig. 2. 
g). The g factor of the reference 8Li is known with a high precision g(8Li) = 
0.826780(9) [8]. Considering proper corrections for the diamagnetic shielding of the 
electrons [8] and x10-4 additional error accounting for a possible drift of the 
magnetic field and a change of the beam position on the crystal over the time period 
we deduce |g(31Mg)| = 1.7671(3). The hyperfine parameters in the same multiplet of 
two isotopes and their g factors are related (1.6). Knowing that 25Mg has a negative 
g factor g(25Mg) = −0.342180(32) [8] and a negative hyperfine constant A(25Mg) = 
−596.254376(54) [9] in 32S1/2, one requires the same sign for the g factor of 31Mg as 
for its hyperfine constant. 
                                                     

1 2 1 2A A g g=                                                     (1.6) 
If the levels F = 1 and F = 0 in 32S1/2 (Fig. 2. c) are interchanged, than the single 
transition F: 0→1 would have higher energy than the other two and would occur on 
the right side of the spectrum. Since it is on the left side, we conclude a negative 
sign for the hyperfine constant and the g factor of 31Mg. For J = 1/2 the ground state 
splitting is |A|(I + 1/2). It has been calculated for spins 1/2 and 3/2, using the A 
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factor derived with (1.6), in order to proof that 1/2 is the nuclear spin corresponding 
to the observed HFS (Fig. 2. d, e). From the firm g factor and spin the magnetic 
moment is derived μ(31Mg) = −0.88355(15) μN. 
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Fig. 2. a, b)HFS of 31Mg1+  in the D2 line with different laser polarization; c)HFS of 
31Mg1+ - level scheme; d, e)Transitions calculated from g(31Mg), g(25Mg) and HFS 
of 25Mg1+ with assumption of the nuclear spin 1/2 and 3/2, respectively; f)NMR of 

31Mg in MgO; g)NMR of 8Li in MgO; 
 
 Discussion 
 
A scheme of the first four states in 31Mg as they are fed in the β decay of 31,32Na [10] 
is shown in Fig. 3. The reported log ft values corresponding to the first two levels are 
4.9 and 5.6, respectively, which suggests that they are populated via an allowed β 
decay and accordingly no change of parity is expected. The 31Na ground state is 
investigated with laser spectroscopy and tentatively assigned the spin 3/2 [11]. 
According to shell-model calculations [12] positive parity is accepted and this 
suggests positive parity for the first two levels in 31Mg. The 1/2+ magnetic moment 
obtained with the ANTOINE code for a pure 2p-2h intruder closely reproduces the 
measured value, while the one for 1/2− is in disagreement [13]. Since they are fed 
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through one neutron emission from the 32Na ground state, negative parity is 
suggested for the 221 and 461 keV levels [10] (the multipolarity assignments come 
from the same study). 
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Fig. 3. Partial level scheme of 31Mg. 
 
Knowing the spin and parity of the ground state of 31Mg, we have been able to 
assign spins and parities to the four lowest levels, showing that all of them are 
intruder states (with a strong competition between 1p-1h and 2p-2h wave functions) 
[13].  The intruder nature of the 1/2+ ground state follows directly from the large-
scale shell-model calculations, which predict this level around 500 keV with a large 
intrinsic quadrupole moment. The Nilsson orbital 1/2[200] becomes the Fermi level 
for β > 0.3 and also suggests considerable prolate deformation for the 31Mg ground 
state. The discussed results are important for the understanding of the competition 
between normal (0p-0h), and intruder (1p-1h,…, np-nh) states at low energy in this 
mass region and for determining more accurately the changing N = 20 shell gap as a 
function of isospin. 
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Abstract. Ground-state properties of neutron-rich 29,31Mg have
been recently measured at ISOLDE/CERN in the context of
shell structure far from stability. By combining the results of β
NMR and hyperfine-structure measurements unambiguous val-
ues of the nuclear spin and magnetic moment of 31Mg are ob-
tained. Iπ = 1/2+ and µ = −0.88355(15) µN can be explained
only by an intruder ground state with at least 2p-2h excitations,
revealing the weakening of the N = 20 shell gap in this nucleus.
This result plays an important role in the understanding of the
mechanism and boundaries of the so called “island of inversion”.

PACS. 21.10.Hw Spin, parity, and isobaric spin−21.10.Ky Elec-
tromagnetic moments −27.30. + t 20 ≤ A ≤ 38 −32.10.Fn Fine
and hyperfine structure

1 Introduction

With the advent of radioactive beam facilities the number of nuclei available
for study became much larger than about 300 stable nuclei investigated before.
Among the ways of gaining insight into this vast variety of nuclear systems, one
is to study their ground-state properties. One of the regions of special interest is
the “island of inversion”, comprising highly deformed neutron-rich nuclei with
10 to 12 protons and about 20 neutrons. The large deformation in this region

a Conference presenter
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Table 1. Ground-state properties of 29,31,33Mg (before our measurements).

Isotope Half-Life Nuclear spin-parity

29Mg 1.3 s 3/2+

31Mg 230 ms (3/2)+
33Mg 90 ms (3/2)+

was first suggested after mass measurement of 31Na [1] and has been since then
observed also by other methods in some neighbouring nuclei, such as 30Ne [2],
30Na [3] or 32Mg [2,4]. The shell model interprets this behaviour as a sign of
weakening, or even disappearance of the N = 20 shell gap between the sd and
fp shells. Due to this, particle-hole excitations come very low in energy and
even become the ground state, giving rise to the inversion of classical shell-
model levels, thus the name of the region. The exact borders of this “island”
are not known. Odd-A neutron-rich radioactive Mg isotopes lie on its onset, or
probably even inside it. Their nuclear moments are not known and only the
spin of 29Mg has been firmly assigned [4], and the spins of 31,33Mg have been
assigned tentatively [5,6] (Table 1). It is therefore important to study these
systems.

2 Experimental procedure and tests

The beams of interest are produced at the ISOLDE mass separator at CERN
via nuclear fragmentation reactions in the UC2 target by a 1.4 GeV pulsed
proton beam (about 3 × 1013 protons per pulse, every 2.4 seconds). They are
next ionised by stepwise excitation in the resonance ionisation laser ion source
[7], accelerated to 60 kV and guided to the collinear laser spectroscopy setup
[8], where laser and β-NMR spectroscopy are performed (Fig. 1). The typical
ion intensities available are 6.5× 106, 1.5× 105, and 8.9× 103 ions/s of 29Mg+,
31Mg+ and 33Mg+, respectively. In the experimental setup the ions are po-
larised, implanted into a crystal lattice and the angular asymmetry of their β
decay is detected [9].

The polarisation is obtained via optical pumping (see [3]). For this purpose
the ions are overlapped with circularly polarised cw laser light and their total
spins (electron and nuclear) get polarised due to the interaction with the light in
presence of a weak longitudinal magnetic field. When positive laser polarisation
is chosen (σ+), after several excitation-decay cycles the ground-state sublevel
with highest mF (projection of the total atomic spin F in the direction of the
guiding magnetic field) is mostly populated. For σ− the population is highest for
the lowest mF = −F (Fig. 2). The electric and nuclear spins are next rotated
in a gradually increasing guiding field and adiabatically decoupled (Fig. 3)
before the ions enter the region of a high transversal magnetic field (0.3 T),
where they are implanted into a suitable host crystal. With polarised spins the
β decay is anisotropic and the angular asymmetry of the emitted β particles
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Fig. 1. Experimental setup for laser and β-NMR spectroscopy on Mg ions. For the
measurements, either the optical detection or the β NMR is used.

can be measured in two detectors, placed at 0 and 180 degrees with respect to
the magnetic field. The hyperfine structure of the ions can be observed in the
change of this asymmetry as a function of the Doppler-tuned optical excitation
frequency.

For the purpose of β-NMR measurements [9,10], the frequency is tuned to
the strongest hyperfine component and the polarisation is destroyed by tran-
sitions between different nuclear Zeeman levels caused by irradiation with a
tunable radio frequency. In a cubic host crystal the nuclear magnetic resonance
takes place when the radio frequency corresponds to the Larmor frequency (νL)
of the implanted nucleus. This frequency allows the determination of the nu-
clear g factor, since νL = g µN B/h (with B as the magnetic field). A precise
g-factor measurement requires high asymmetries and narrow resonances. Both
the linewidth and amplitude of the observed resonance can depend strongly
on the used implantation crystal. Three cubic crystals were tested. At room
temperature MgO turned out to be superior to metal hosts (it gave up to 6.7%
asymmetry, compared to 3.1% for Pt and 1.8% for Au, all values taken for

Fig. 2. Optical pumping of 31Mg with an assumed spin I = 1/2 and a negative
magnetic moment. The process is shown for F = 1 → F ′ = 2 transitions with
positive and negative laser light polarisation, which populate different mF sublevels.
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Fig. 3. Behaviour of the ground-state hyperfine structure of 31Mg for weak and strong
magnetic field (I = 1/2 and negative µ assumed).

31Mg, with the linewidths comparable for all three crystals) and was therefore
used for further measurements.

3 Hyperfine structure and g factor of 31Mg

The transitions suitable for optical pumping of Mg ions are the excitations from
the ground state to the two lowest lying excited states, 3s 2S1/2 → 3p 2P1/2 and
3p 2P3/2 (D1 and D2 lines). The wavelength (280 nm) is in the ultraviolet range.
For better efficiency (about 5%) an external cavity was used to frequency double
the 560 nm output of a ring dye laser (Pyrromethene 556 as active medium),
which was in turn pumped by a multiline Ar+ laser. The UV powers obtained
in this way (about 15 mW) suffice to saturate the transitions (Fig. 4). With
this setup the hyperfine structure of 31Mg for both lines was recorded for σ+

and σ− polarised light (Fig. 5). The structures reveal 1/2 as the most probable
nuclear spin, since this is the only case which can reproduce the observed three
hyperfine components for both D1 and D2 lines, as shown in Fig. 6. For all

Fig. 4. β-decay asymmetry as a function of the laser power.
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Fig. 5. Measured hyperfine structure of 31Mg D1 and D2 lines for σ+ and σ− polarised
light?. The experimental count rate asymmetry is shown as a function of the Doppler
tuning voltage.

other spins (e.g. 3/2, 7/2) there should be 4 components in the D1 line (fully
resolved) and 6 in the D2 line (at least partly resolved).

The positive and negative resonances in Fig. 5 reflect the sign of polarisation
achieved by optical pumping on the different hyperfine-structure components
for which only one example is shown in Fig. 2. For a quantitative explana-
tion one has to take into account also the decay from the excited state to
the other ground-state level (with F = 0 in the case of Fig. 2). The distri-
bution of population over the different |F,mF 〉 levels can be calculated [3] by
solving rate equations including the relative transition probabilities for the ex-
citations |F,mF 〉 → |F ′,mF

′〉 and subsequent decays |F ′,mF
′〉 → |F,mF 〉.

Fig. 3 shows the rearrangement of electronic and nuclear spins by the adia-
batic decoupling which occurs while the ions enter the strong magnetic field
region. Apparently, the effect of σ+ and σ− optical pumping is asymmetric in
the final population of |mJ ,mI〉 levels reached in the Paschen-Back regime.
Only the distribution over the nuclear Zeeman levels mI is responsible for the
β-asymmetry signals observed in the spectra. These are different in amplitude
and only partly in sign under reversal of the polarization from σ+ to σ− light.

? There is a confusion in the original publication between σ±. In Fig. 5 and every-
where in the text one must consider the opposite sign of the laser polarization.
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Fig. 6. Predicted hyperfine structure of 31Mg D1 and D2 lines for I = 1/2 and a
negative magnetic moment.

After hyperfine-structure scans, the acceleration voltage is fixed to the hy-
perfine component giving largest asymmetry (6.7% for D2 line with σ+) and
β-NMR measurements follow. Several resonances in a cubic MgO lattice give
the Larmor frequency νL(31Mg)= 3859.72(13) kHz. For the calibration of the
magnetic field (within 48 hours of taking the data for 31Mg) a search for Lar-
mor resonances in the same crystal was performed on optically polarised 8Li
with the g factor g(8Li)= 0.826780(9) [11]. This nucleus is available from the
same ISOLDE target and requires changes in the optical pumping laser sys-
tem (excitation wavelength around 670 nm), as well as minor modifications to
the setup. The reference Larmor frequency is νL(8Li) = 1807.03(2) kHz. From
the above, the deduced absolute value of the g factor of 31Mg is |g(31Mg)|=
1.7671(2) (corrected for diamagnetism) [12]. The final error includes a system-
atic uncertainty accounting for the inhomogeneities of the magnetic field and
its drift between the measurements on 31Mg and 8Li.

4 Nuclear magnetic moment and spin of 31Mg

The hyperfine splitting depends both on the nuclear spin and the g factor,
e.g. the splitting between the ground-state hyperfine components of 31Mg (the
electronic spin J = 1/2) equals ∆ν = |A|(I +1/2), with the hyperfine constant
A = g µN Be/J . Based on the measured g factor and the hyperfine splitting one
can thus determine the spin and the absolute value of the magnetic moment
(µ = g I µN ) of 31Mg. A reference measurement on a different Mg isotope with
a known g factor is also required, in order to calibrate for the magnetic field
created by electrons at the site of the nucleus (Be). ∆ν can be then expressed
as ∆ν = (I + 1/2) |g Aref/gref |. For this purpose stable 25Mg was chosen and
was studied by means of classical collinear laser spectroscopy with the optical
detection method (Fig. 1). To verify if our measurements are performed in
the correct way, we scanned the hyperfine structure of this isotope in the D1

line (Fig. 7). The measured hyperfine-structure constant for the ground state
Ag.s.(25Mg) = −596.4(3) MHz is in excellent agreement with the accurate value
quoted in the literature −596.254376(54) MHz [13]. This value, together with
the known magnetic moment µ = −0.34218(3)µN and spin I = 5/2 [11] of
25Mg, as well as the measured value of the ground-state splitting of 31Mg
∆ν = 3070(50) MHz, reveals the spin I = 1/2 for 31Mg. This was expected
from the number of hyperfine-structure components. From the positions of the
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Fig. 7. Hyperfine structure of 25Mg+ recorded by detecting the photons emitted
during the relaxation of the ions in the optical detection part of the setup.

resonances also the sign of the magnetic moment can be deduced (µ < 0). The
negative value of the magnetic moment implies furthermore a positive parity
of this state. It follows both from the earlier β-decay studies [5], as well as
from the large scale shell-model calculations presented in Neyens et al. [12].
Calculations with different interactions, both in the sd and in the extended
sd− pf model spaces, predict a positive magnetic moment for the lowest 1/2−
state. Thus our observed negative sign excludes the negative parity option, in
agreement with the assignment based on the β decay. Therefore we conclude
that µ(31Mg)= −0.88355(10) µN and Iπ(31Mg)= 1/2+.

Shell-model calculations in the sd model space using the USD interaction
[14] predict the lowest I = 1/2+ level only at 2.5 MeV excitation energy.
More advanced large scale shell model calculations, including excitations of
neutrons into the pf -shell, and using the interactions as described in [15] and
in [16], both predict the 1/2+ level below 500 keV and with a magnetic moment
close to our observed value [12]. The wave function of this 1/2+ state consists
mainly of intruder configurations, which places this nucleus inside the “island
of inversion”.

This unambiguous spin-parity measurement allowed us also to make tenta-
tive assignments to the lowest lying excited states in 31Mg [12].

Similar measurements have also been performed for 29Mg. They include the
nuclear g factor and the ground-state spin I = 3/2, which is well described in
the sd shell model. This measurement places the ground state of 29Mg outside
the “island of inversion”. Study of shorter-lived 33Mg is planned for the future.

This work has been supported by the German Ministry for Education and Re-
search (BMBF) under contract No. 06MZ175, by the IUAP project No. p5-07 of OSCT
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